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Abstract: Deep learning techniques such as convolutional neural networks have largely improved the
performance of building segmentation from remote sensing images. However, the images for building
segmentation are often in the form of traditional orthophotos, where the relief displacement would
cause non-negligible misalignment between the roof outline and the footprint of a building; such
misalignment poses considerable challenges for extracting accurate building footprints, especially for
high-rise buildings. Aiming at alleviating this problem, a new workflow is proposed for generating
rectified building footprints from traditional orthophotos. We first use the facade labels, which
are prepared efficiently at low cost, along with the roof labels to train a semantic segmentation
network. Then, the well-trained network, which employs the state-of-the-art version of EfficientNet
as backbone, extracts the roof segments and the facade segments of buildings from the input image.
Finally, after clustering the classified pixels into instance-level building objects and tracing out the
roof outlines, an energy function is proposed to drive the roof outline to maximally align with the
building footprint; thus, the rectified footprints can be generated. The experiments on the aerial
orthophotos covering a high-density residential area in Shanghai demonstrate that the proposed
workflow can generate obviously more accurate building footprints than the baseline methods,
especially for high-rise buildings.

Keywords: image segmentation; building footprint; aerial orthophoto; relief displacement

1. Introduction

High precision building footprints are one of the most important elements within the
geographic vector map of cities, which plays a significant role in many fields, such as urban
planning, post-disaster management, carbon emission calculation, and location-based
services. The successful application of deep learning techniques such as convolutional
neural networks (CNNs) has now greatly improved the accuracy of automatic building
detection from remote sensing images [1–3]. Despite this achievement, few studies have
been proven capable of accurately extracting building footprints (i.e., the boundaries where
the building facades meet the ground) from the traditional orthophotos; instead, several
previous works focus on segmenting roof surfaces from the input image [4–6]. However,
for the traditional orthophotos, the roof outline cannot always accurately represent the 2D
geographic location of the building footprint. For example, Figure 1 shows a building in an
orthophoto which has been properly projected on a digital terrain model (DTM), in which
the footprint and the roof outline are largely misaligned due to the tilt effect of the building.

The tilt effect is usually more significant for high-rise buildings; thus, the typical work-
flow, which first trains a CNN with roof labels and then makes roof pixel predictions, would
easily introduce positioning errors for these buildings. Consequently, when performing
building detection in urban areas with a large number of high-rises (e.g., in metropolises
or most Chinese cities), the tilt effect of buildings would be a non-negligible issue related
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to localization precision. Although adopting true orthophotos instead of traditional ones
can theoretically remove the residual tilt of buildings, the production of a true orthophoto
relies heavily on a high-quality digital surface model (DSM) [7] or digital building model
(DBM) [8]; however, the DSM could be unavailable in many situations (e.g., the DSM can
hardly be derived when the imaging sensor is monocular) or may have limited quality,
while the acquisition of DBM includes the building detection target itself to some extent.
Therefore, in practice, images in the form of traditional orthophotos are still the main data
source for building detection, especially from satellite images.

Figure 1. The misalignment between the roof outline (cyan) and the footprint (red) of a building in a
traditional orthophoto.

The reason for the above tilt effect is that the process of the traditional orthorectification
only removes the terrain relief, while the ground objects, particularly the high-rises, are not
rectified properly. As a result, in a traditional orthophoto, if we try to use the building roof
outline to approximately represent its footprint, it might need to be further “rectified” by
shifting to maximally align with the actual building footprint. Aiming at extracting such
rectified footprints, in this approach, we propose a new feasible workflow for building
footprint extraction from orthorectified aerial images. First, the roof label as well as
the rectified footprint label are annotated for each building among the training images,
and the facade label of the building is automatically derived. Then, a high-performance
semantic segmentation CNN is trained and applied to test images, and the instance-level
buildings with roof and facade segments are obtained by clustering the classified pixels.
Finally, a simple optimization model is proposed to drive the extracted roof outline of
every building to maximally align with its footprint; thus, the rectified footprint results can
be generated.

We test the proposed workflow on a dataset containing aerial traditional orthophotos
of a typical high-density residential area in Shanghai, which has 17,562 and 2371 buildings
for training and test, respectively. As many other major cities in China, plenty of high-rises
are within the test orthophotos, where obvious tilt effect can be observed. The experimental
results show that the proposed workflow can extract obviously more accurate footprints
than the baseline methods, which only use roof or footprint labels for training, and directly
predicts segmentation results. The main findings or innovation points of our work are
as follows:

• We observe a critical distinction between building roof and footprint extraction; by
conducting comparative experiments, we verify that equating roof outline extraction
to building mapping could lead to obvious errors.

• By classifying roof and facade pixels simultaneously, we propose a new workflow
to extract rectified building footprint from traditional orthophotos, which can better
adapt to the urban areas with a large amount of high-rises.

• We propose a simple optimization model for rectifying the locating deviation caused
by the tilt effect, which can effectively improve the location accuracy for the identified
buildings, especially for the high-rises.
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The remainder of the paper is organized as follows. Section 2 provides a review for the
related work. Section 3 introduces the dataset for experiment and presents the details for
the proposed workflow and methods. Section 4 shows comparative experimental results.
Section 5 makes further discussion about our workflow. Section 6 draws conclusions for
the study.

2. Related Work
2.1. Building Segmentation

Before the popularity of deep learning, the general strategy of building segmentation
from remote sensing images can be divided into two steps: (i) feature extraction, which
performs explicit feature design and describes the image elements such as points, edges, or
regions with spectral, textural, or other statistical information, and (ii) feature classification
that labels the featured elements using classifiers such as random forest [9], adaptive
boosting [10], and support vector machine [11]. The drawback of these methods is that the
abstraction level of the extracted features is restricted by hand-crafted design, which would
easily lead to limited generalization capability to heterogeneous scenes or imaging sensors.

The deep-learning-based methods, typified by CNN, have substantially reduced the
dependence on manual feature design by adaptively learning high-dimensional features
from images, thus significantly improving the performance of building segmentation [12,13].
The proposal of the fully convolution network (FCN) [14] is another milestone in semantic
segmentation, which has been rapidly applied in building detection for its capability of
directly and efficiently predicting full resolution segmentation results [15,16]. Later, many
FCN-like networks with symmetric architectures such as U-Net [17], SegNet [18], and
feature pyramid network [19] have become the mainstream deep-learning-based methods
for building segmentation [20–22]; these networks are typically constructed by an encoder,
which usually follows the design of the classic FCN, and a decoder, which upsamples the
feature map and fuses multi-layer features. In order to enhance the performance of the
architectures, further improvement, including feature selection [23] and multi-scale or multi-
element feature fusion [24,25], have been proposed and applied to building segmentation.
Currently, EfficientNet [26], which is developed by incorporating neural architecture search
and scaling, has been proven as one of the state-of-the-art image recognition models and
successfully applied to building detection [27].

Many open-source datasets [28,29] for building segmentation only provide footprints
as ground truths. Learning from samples with footprint labels could be challenging
for deep-learning models [30], because the training data may present two different and
somewhat contradictory patterns [13]: for many low buildings, their footprints are mostly
consistent with the roof outlines; for a high-rise, its footprint polygon may simultaneously
partly include the roof and the facade (as shown in Figure 1). Therefore, other studies
focus on roof segmentation and achieve high performance [4–6], but the segmentation
results may still suffer from a lack of mapping accuracy due to the errors introduced by the
misalignment between the roof and the footprint.

2.2. Misaligned Vector Correction and Relief Displacement

By far, few studies have developed specialized algorithms for automatically shifting
the extracted roof outline to reduce its misalignment with the actual footprint. Similarly,
there are several approaches that have tried to adaptively correct the displacement for
the misaligned building vector data [31,32], the most typical of which is to improve the
registration accuracy between open-source vector maps and remote sensing images [33].
However, guiding by the salient features on the roof boundary, these approaches can
generally produce building vectors fitting well with roof outlines [34]. It means that,
in traditional orthophotos, even if the building vectors have been updated after registration,
they could still be displaced from the actual coordinates of the buildings, especially for the
high-rises with obvious tilt effect.
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The key point to address is that the influence brought by the tilt effect is compensating
the offset deviation caused by the relief displacement. Relief displacement is a classic
problem in photogrammetry which should be properly handled in many applications, such
as image mosaicking [35], true orthophoto production [7], 3D building model construct-
ing [36], and change detection [37]. Besides, the influence brought by relief displacement
to building footprint extraction has also attracted attention. For example, Zhuo et al. seg-
mented the image into roof, facade, and background pixels and successfully optimized the
vector data from OpenStreetMap (OSM) to strictly align with the building footprint [38].
However, this approach is based on the existing OSM data; directly extracting building
footprints from traditional orthophotos is still a rarely discussed problem.

2.3. Summary

In general, the characteristics of the proposed approach and the main relevant work
can be summarized as in Table 1.

Table 1. Comparison of the characteristics between previous work and ours.

Approaches
Training Labels Displacement

Correction
Pros and Cons

Roof Footprint

[5,6] X The learning task is clearly defined as roof seg-
mentation, but errors could be introduced by
relief displacement.

[28–30] X The collected footprint labels can be used with-
out further refinement, but the patterns of the
training data are challenging for learning.

[33] X X Registration of collected labels is conducted
guiding by roof boundary features, but displace-
ment may remain due to obvious tilt effect.

Ours X X X Relief displacement is fully considered by per-
forming 3-category segmentation, but additional
labels are required for model training.

3. Materials and Methods
3.1. Data

As shown in Figure 2, a high-density residential area in Waitan of Shanghai is selected
as the study region. We collected several aerial images captured by Leica DMC III airborne
digital camera with 10 cm resolution for experiment. All the images are rectified into
traditional orthophotos and merged as a mosaic. The whole study area covers about
11 km2 and is split into training and test areas, which include 8.9 km2, 17,562 buildings and
2.1 km2, 2371 buildings, respectively. The labels of the dataset are determined in a different
way from other studies: for every building, the polygon encircling the roof outline is first
annotated; then, if relief displacement (i.e., the tilt effect) can be observed for the building,
the annotated polygon is duplicated and shifted to align with the footprint as accurately as
possible. The two kinds of labels are both used for model training and accuracy evaluation.
Besides, to explore the influence of relief displacement to detection accuracy of buildings
with different heights, the test area is further divided and classified by visual checking into
three categories: high-rise, mid-rise, and low-rise buildings (see Figure 2, right side).
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Figure 2. The study area in Waitan of Shanghai. The left image shows the split of the training and
test areas, which are delineated by blue and white polygons, respectively; the red vectors represent
the building instances within the study area. The right image shows the enlarged view for the test
area, where the areas covering high-rise, mid-rise, and low-rise buildings are shaded in yellow, red,
and blue, respectively.

3.2. Methods

As shown in Figure 3, a new workflow is proposed in this approach for extracting
rectified building footprints from traditional orthophotos. The workflow includes: (i) with
the use of the annotated polygons of the roof and the rectified footprint, the facade label of
every building is derived through several geoprocessing operations; (ii) the roof and facade
labels are adopted for training a semantic segmentation network, which has a roughly
symmetric design and employs the state-of-the-art version of EfficientNet as its backbone,
in which the well trained segmentation network classifies the pixels of the input test image
into roof/facade/background categories; (iii) the instance-level buildings with roof and
facade segments are obtained by clustering the classified pixels, and the outline of the roof
for each building is then extracted; and (iv) an energy function is constructed to drive the
roof outline to align with the visible edges of the building footprint, and the final rectified
footprint results can be generated.

Training Data

Segmentation

Network Paras

Segmentation

Network ParasTest DataTest Data

Clustering &

Vectorization

Segmentation 

Result

Segmentation 

Result

Relief 

Displacement 

Correction

Deriving facade labels

……

Model Training

Roof OutlineRoof Outline

Building 

Footprint

Building 

Footprint

Figure 3. The proposed workflow for rectified building footprint extraction.

3.2.1. Training Label Preparation

The key strategy of our approach is to simultaneously segment building roof and
facade from the images. Thus, besides the labels of roof outlines, the facade labels also need
to be prepared before model training. Directly annotating the facade label for a building
could be time consuming. Instead, in our approach, several geoprocessing operations
are applied to the roof and footprint labels for generating the facade label automatically.
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Figure 4 indicates the procedures of facade label generation. First, considering that the
footprint polygon of every building is duplicated from the roof polygon, the one-by-
one correspondence between vertices of the roof and footprint polygons can be easily
determined. Since two adjacent vertices of the roof and the footprint can form a rectangle,
which is a portion of the facade, the complete facade can be covered by constructing all the
rectangles. Then, by dissolving the roof polygon along with all facade rectangles, the whole
building containing the roof and facade, which we term as a complete building object
(CBO), can be obtained. Afterwards, the facade label can be generated by subtracting the
roof polygon from the CBO polygon.

Connect

corresponding

points

Rasterize

roof outline

Dissolve Substract

Figure 4. Derivation of the facade label with the roof and footprint polygons.

3.2.2. Segmentation for Building Roof and Facade

Figure 5 shows the architecture of the framework designed for our building segmen-
tation task. We use EfficientNetV2 [39] as the encoder of the structure due to its high
performance on image recognition tasks. Following its original design, the block of mobile
inverted bottleneck convolution (MBConv) is applied in the encoder for efficiently extract-
ing fine-grained high-level features, while the MBConv blocks in the first fewer stages are
replaced by the Fused-MBConv to further improve the efficiency. The features output by
the encoder are gradually upsampled within the decoder, which produces the final features
for building segmentation. Inspired by RefineNet [25], a multi-resolution fusion module is
applied to the features of different scales for better capturing the contextual information.
Specifically, in each stage of the decoder, the feature map with higher resolution in the
encoder is reused along with the current feature map for generating new features. The
two feature maps are both processed by the residual convolution blocks, each of which
includes three 3× 3 convolution kernels, with the first two followed by Swish activation
functions [40]. The lower-resolution feature map after processing is upsampled and then
merged with the higher-resolution one (i.e, element-wise addition) for generating the fusion
result. Besides, we also employ the pyramid pooling module of the PSPNet [24], which is
appended to the final feature map of the encoder as well as the decoder, to enhance the
global information of the obtained features. Finally, an inference structure followed by a
Softmax classifier is employed for predicting the probability map, which is then used for
segmenting the input image pixels into roof/facade/background categories.
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Figure 5. The architecture of the segmentation network designed for our approach.

3.2.3. Relief Displacement Correction

Following the operations conducted by [2], the probability map predicted by the
segmentation network is post-processed to remove classification noises and the closed areas
of the non-background pixels are clustered to generate CBO instances. In our approach,
there are many CBO instances simultaneously including the roof as well as the facade
segments; for these buildings, the position of their roof segments could be considerably
offset from their actual coordinates due to relief displacement. Thus, a simple optimization
model is proposed for adaptively translating the roof segment and maximally compensating
the relief displacement. We define the energy function as E = Earea + αEboundary, where
Earea and Eboundary represent two metrics, which jointly drive the roof segment toward the
position of the building footprint; α is the weight parameter of Eboundary.

Figure 6 illustrates the computation procedures of the two metrics: (i) the segmentation
result is first split into the roof segment and the facade segment, and the combination of
the two is considered as the CBO segment; (ii) the roof segment is translated as a whole
by adding a 2D correction vector (i.e., ∆x and ∆y), and the updated roof segment and the
facade segment are compared to compute Earea; and (iii) the boundaries of the updated
roof segment and the CBO are both extracted, and the buffer areas of the two boundaries
are compared to compute Eboundary. We use the Earea to impel the roof segment maximally
overlapping with the facade, while the Eboundary prevents the roof segment from crossing
the CBO boundary.

The negative intersection over union (IoU) is used for representing the two energy
items, which are defined as:

Earea = −
Aroo f ∩ A f acade

Aroo f ∪ A f acade
(1)

Eboundary = −
Broo f ∩ BCBO

Broo f ∪ BCBO
(2)

where Aroo f and A f acade represent the areas of the roof segment and the facade segment,
respectively; Broo f and BCBO represent the boundary buffer areas of the roof segment and
the CBO segment, respectively.

The target of the above optimization problem is to find the ∆x and ∆y that minimize
E. Searching the whole possible range pixel by pixel could be time consuming; thus,
a simple coarse-to-fine searching strategy is used to find the optimal position. First, since
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the updated roof segment is supposed to locate within the CBO, the whole searching space
SH,W can be easily determined; then, SH,W is divided into 10× 10 sectors, in which the
sector with its center point minimizing E can be selected as the most promising object area
for more refined search; and, finally, the optimal position can be determined by performing
pixel-wise searching within the object area.

Extract

Boundary

Extract

Boundary

∆x

∆y

∆x

∆y

Compare

Compare

Earea

Eboundary

Segmentation Result

Roof Segment

Facade Segment

CBO Segment

Figure 6. The computation of the metrics for defining the optimization energy function.

4. Results
4.1. Implementation Details

We implement our algorithms in Python on a 64-bit Ubuntu system. The segmentation
network is trained and tested in PyTorch [41] with 6 NVIDIA GeForce RTX 2080Ti GPUs.
The encoder of the network follows the configuration of EfficientNetV2-S [39] due to
the limited volume of the training data. We set the crop size as 768 × 768, the batch
size as 12, the initial learning rate as 0.001, and train over the whole training set for
100 epochs, during which the learning rate is decreased by half at the 30th, 50th, and 80th
epoch. The optimizer of stochastic gradient descent with a weight decay of 0.0001 and a
momentum of 0.9 is employed for model training.

The buffer size for comparing boundaries of the roof and the CBO is set as 3 pix-
els. The weight parameter α in the proposed energy function is set as 2.25 after tuning.
Considering the segmentation error, the CBO’s bounding box plus 30 pixels of padding
is considered as the moving border of the roof segment to determine SH,W . The traced
boundary of the roof segment is simplified by applying the Douglas–Peucker algorithm [42]
with threshold of 3 pixels, which helps generate the final vectorized footprint for a building
after relief displacement correction.

4.2. Baselines and Evaluation Metrics

The primary motivation of this approach is to validate the necessity and feasibility of
the proposed new workflow. Therefore, we use two representative building segmentation
workflows as the baseline methods for comparison:

• Baseline-1. For this workflow, the segmentation network is trained with labels that
delineate the roof outlines and the segmentation target is focused on the rooftop [5,6].

• Baseline-2. The network is trained with footprint labels, which could be obviously
misaligned with the roof outlines for high-rise buildings. The prediction of this
workflow is expected to represent the location of the building footprint [30]. Most
studies that directly use a SpaceNet [28] or INRIA [29] dataset can be classified as
this workflow.
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The two baselines share the same algorithms with the proposed approach, but the main
difference is the input training labels of the workflow: the baselines use only single types
of labels for model training and conduct binary segmentation, while our approach takes
relief displacement into consideration and simultaneously generates results of roof outlines
and footprints.

Following related studies [13,43], the metrics of IoU [44], F1-score, Precision, and Recall
are used for evaluating the segmentation accuracy. For our approach, the prediction results
of the roof outlines and the footprints are separately evaluated by the human-annotated
roof and footprint labels, respectively. For the two baselines, to explore how much the roof
predictions can be used as footprints (or vice versa), the results are evaluated by not only
the roof but also the footprint labels.

4.3. Overall Comparison

Table 2 shows the quantitative comparison results of the three workflows for the
whole test set. Generally, the proposed workflow achieves obvious improvement over the
two baselines in terms of both roof outline results and footprint results. Our improved
workflow generates building footprints with higher accuracy than Baseline-2 (0.794 vs.
0.720 in IoU), which demonstrates that directly training the segmentation network with
footprint labels can lead to certain accuracy loss. Our workflow also achieves higher roof
segmentation accuracy than Baseline-1 (0.883 vs. 0.856 in IoU) by gaining a 3.2% increment
of Recall, revealing that the additional facade labels can help the network better understand
the semantic pattern of the rooftop. Another important finding is that, although Baseline-1
presents good performance in roof segmentation, the accuracy of its results decreases
sharply (from 0.856 to 0.626 in IoU) when evaluated by footprint labels, which verifies that
for areas with high-rise buildings, performing deep-learning-based building mapping by
equating the roof outline to its footprint position could lead to significant errors. Meanwhile,
the results of Baseline-2 achieve poor accuracy whether evaluated by the footprint labels or
the roof labels, indicating that the model could be misguided by the labels including both
the roof and the facade textures.

Table 2. Evaluation results of the three workflows for the whole test set. For every metric, the highest
value is highlighted in bold.

Workflows
Reference: Roof Reference: Footprint

IoU F1-Score Precision Recall IoU F1-Score Precision Recall

Baseline-1 0.856 0.922 0.961 0.886 0.626 0.770 0.801 0.741
Baseline-2 0.613 0.760 0.798 0.726 0.720 0.837 0.878 0.800
Ours 0.883 0.938 0.958 0.918 0.794 0.885 0.904 0.866

Figure 7 presents the overall prediction results and their evaluation maps of the
three workflows. As for the roof predictions, our workflow exhibits higher capability of
extracting complete roof segments than Baseline-1 (e.g., the large buildings within the red
rectangles). Besides, the road area covered by crowded cars is much more easily mistaken
as roof area by Baseline-1 than our workflow (i.e., areas within the black rectangles),
indicating that the proposed workflow leads to better semantic understanding of building
rooftops. As for the footprint predictions, Baseline-2 omits considerable parts of the large
buildings’ footprints within the red rectangles, while our workflow is able to extract
relatively complete results. The blue rectangles point out several high-rise buildings with
large relief displacement, where our workflow obviously outperforms Baseline-2 by well
suppressing the false detection.
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Figure 7. Evaluation of the three workflows for the overall test area. The results of Baseline-1 and
Baseline-2 are polygons shaded in cyan and red on the images; the two workflows are visually
evaluated by the roof labels and the footprint labels, respectively. Our workflow simultaneously
generates roof outlines and footprints, which are separately evaluated by the roof labels and the
footprint labels, respectively.

As shown in Figure 8, typical scenarios are selected from the test set for making
further comparison between the three workflows. Generally, Baseline-2 can identify the
buildings at object-level, but often fails in accurately extracting the geometric shape of the
footprints. In comparison, our workflow makes good use of the edge information from the
roof outlines, thus generating more accurate and geometrically reasonable footprint results.
On the other hand, the results demonstrate that our workflow outperforms Baseline-1 by
better capturing the details of the roof outlines. As pointed out by the red arrows, our
workflow is more robust to the shadow cast by the high-rises (i.e., Figure 8a–c), the building
with complicated geometric roof shape (i.e., Figure 8d), and the background with similar
color to the rooftop (i.e., Figure 8e,f).
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Figure 8. Results of the three workflows in typical scenarios. (a–c): high-rise buildings; (d,e): middle-
rise buildings; (f–h): low buildings. The leftmost column shows the annotated roof and footprint
labels of the test images, which are delineated by cyan and red polygons, respectively. The roof and
footprint predictions of the three workflows are shaded in cyan and red on the images, respectively.
The facade predictions of our workflow are also presented (in the fourth column, shaded in yellow).
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5. Discussion
5.1. The Advantage of the Proposed Approach

The impact of the relief displacement to extracting and positioning buildings from
traditional orthophotos is adequately considered in our approach. We improve the typ-
ical workflow of building segmentation by using additional facade labels and applying
relief displacement correction to the extracted roof segments. The experimental results
demonstrate that the proposed workflow obviously outperforms the typical workflows
(i.e., the two baselines) in high-density residential areas. The workflow that focuses on roof
segmentation [5,6] can generally extract high-quality roof outlines, but those outlines can
hardly represent the position of the building footprints accurately. Directly training the
segmentation network with footprint labels [30] is also proven to cause loss of accuracy in
our experiment, most likely because the complex pattern of the building footprint in the
traditional orthophoto, to some extent, challenges the learning capability of the model.

Different from other studies, the proposed workflow requires two annotations (i.e.,
the roof polygon and the rectified footprint polygon) for a single building when performing
model training. However, the additional time cost for sample preparation is not significant,
since the only added operation after delineating the roof outline is duplicating the polygon
and translating it to align with the footprint; for buildings that present no relief displace-
ment, no additional operation is required for label annotation. Therefore, we believe that
the additional cost of our workflow is within an acceptable level in contrast to the achieved
accuracy improvement, especially for areas densely covered by high-rise buildings.

5.2. The Effectiveness of the Design Options

Currently, training the segmentation network with polygon labels and making binary
pixel-wise classification is the mainstream workflow for building detection from remote
sensing images. The additional designs of our approach over traditional solutions are
two-fold: (i) three-category segmentation with roof and footprint labels and (ii) the module
of relief displacement correction. When ablating the displacement correction module, our
workflow can only generate roof outline predictions; using the roof outline results for
representing building footprints leads to a much larger error (0.643 vs. 0.794 in IoU), which
demonstrates the necessity of correcting the relief displacement in our approach. As for
the segmentation module, the proposed workflow degrades to Baseline-1 if not using
additional facade labels for model training; the evaluation results in Table 2 has proven
that importing facade labels helps producing finer roof segmentation results.

In terms of time-consuming, after training, the proposed framework generates the
three-category segmentation results for the whole test area (18, 567× 20, 568 pixels in total)
in 818.9 s via a GPU and finishes the process of displacement correction for 1190 buildings
within the test area in 1411.8 s via a single CPU. The efficiency of the proposed workflow
should be acceptable for most general applications.

5.3. Detection Accuracy of Areas with Different Building Height

As listed in Table 3, the results of the test areas with high-rise, mid-rise, and low-
rise buildings are evaluated separately for further analysis. The evaluation shows that
the advantage of our workflow is considerably magnified for the high-rise buildings.
When evaluated by the footprint labels, the improvement of our workflow over Baseline-2
increases to 10.8%, while Baseline-1 presents a significant worse overall accuracy (0.391 vs.
0.732 in IoU), which fully demonstrates the necessity of correcting the relief displacement
within these areas. In general, the difference between our workflow and the baselines
gradually narrows from high-rise buildings to low-rises, but even for low buildings, our
workflow still gains 7.5% increment of IoU over Baseline-2, indicating that the performance
of the model trained solely by the footprint labels could be weakened by the samples with
large relief displacement. The difference between the proposed workflow and Baseline-1 is
relatively small when evaluating by the roof labels, especially for the low buildings, which
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means that adopting our workflow could be unnecessary if relief displacement is rarely
observed in the application scenarios.

Table 3. Evaluation results of the three workflows for areas with different building height. For every
metric, the highest value is highlighted in bold.

Building
Type Workflows

Reference: Roof Reference: Footprint

IoU F1-Score Precision Recall IoU F1-Score Precision Recall

High-rise
Baseline-1 0.833 0.909 0.966 0.859 0.391 0.581 0.543 0.562
Baseline-2 0.465 0.635 0.618 0.653 0.624 0.800 0.740 0.769
Ours 0.864 0.927 0.951 0.904 0.732 0.865 0.826 0.845

Mid-rise
Baseline-1 0.816 0.899 0.960 0.845 0.622 0.798 0.738 0.767
Baseline-2 0.609 0.757 0.778 0.737 0.690 0.886 0.758 0.817
Ours 0.860 0.925 0.959 0.893 0.766 0.899 0.838 0.867

Low-rise
Baseline-1 0.883 0.938 0.963 0.914 0.754 0.868 0.852 0.860
Baseline-2 0.714 0.833 0.848 0.818 0.756 0.915 0.813 0.861
Ours 0.900 0.947 0.959 0.936 0.831 0.919 0.897 0.908

Figures 9–11 illustrate the results of the three workflows for typical high-rise, mid-rise,
and low-rise buildings, respectively. For the high-rises, it can be seen from Figure 9 that the
buildings have significant tilt effect, which largely challenges the recognition performance
of Baseline-2, leading to geometrically irregular and sometimes fragmented segmentation
results. Meanwhile, our workflow slightly outperforms Baseline-1 by recovering more
complete roof boundaries (as pointed by the red arrows), demonstrating the advantage
of applying additional facade labels in building segmentation. Similar conclusions can
be made for the mid-rise buildings in Figure 10; although the tilt effect is relatively un-
noticeable, Baseline-2 still fails in extracting regular footprint polygons. For the low-rise
buildings, Figure 11 shows that our workflow can accurately correct the relief displacement
even if the imaging area of the building facades is quite small. In comparison, Baseline-1
achieves a similar performance with ours in roof segmentation, but Baseline-2 still seems
not to have learned a stable pattern for footprint extraction.
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Figure 9. Results of the three workflows for typical high-rise buildings. The leftmost column shows
the annotated roof and footprint labels of the test images, which are delineated by cyan and red
polygons, respectively. The roof and footprint predictions of the three workflows are shaded in cyan
and red on the images, respectively. The facade predictions of our workflow are also presented (in
the fourth column, shaded in yellow).
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Labels(Roof/footprint) Baseline-1 Baseline-2 Ours(roof/facade) Ours(footprint)

Figure 10. Results of the three workflows for typical mid-rise buildings. The leftmost column shows
the annotated roof and footprint labels of the test images, which are delineated by cyan and red
polygons, respectively. The roof and footprint predictions of the three workflows are shaded in cyan
and red on the images, respectively. The facade predictions of our workflow are also presented (in
the fourth column, shaded in yellow).
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Labels(Roof/footprint) Baseline-1 Baseline-2 Ours(roof/facade) Ours(footprint)

Figure 11. Results of the three workflows for typical low-rise buildings. The leftmost column shows
the annotated roof and footprint labels of the test images, which are delineated by cyan and red
polygons, respectively. The roof and footprint predictions of the three workflows are shaded in cyan
and red on the images, respectively. The facade predictions of our workflow are also presented (in
the fourth column, shaded in yellow).

6. Conclusions

In this study, an improved workflow is proposed for extracting more accurate building
footprints from traditional orthophotos of aerial images. Different from previous studies,
the tilt effect of buildings is fully considered in our workflow. A deep-learning-based
segmentation network is constructed for obtaining roof and facade segments from images;
additionally, a module of relief displacement correction is applied for compensating the
locating deviation of the extracted roof segments. The experiments on a dataset of a high-
density residential area in Shanghai demonstrate that our workflow can generate more
accurate results of roof outlines (with IoU of 0.883) and building footprints (with IoU of
0.794) than the baseline methods. The comparative analysis verifies that the first baseline,
which conducts strict rooftop segmentation, generates high-quality roof extraction results,
but those results can hardly be equated to accurate building footprints. The second baseline,
which trained the segmentation network solely with footprint labels, generally fails to
produce building footprints with high accuracy or regular geometry, especially for the
high-rise buildings. Nevertheless, the proposed workflow also has limitations. For example,
a multi-layer structured building may have two or more blocks with varying degrees of
relief displacement. This is currently challenging for us since our workflow would consider
the multiple building blocks as one complete object. The subsequent study will take this
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problem into consideration. Besides, the applicability of the proposed workflow to satellite
orthophotos will also be explored in the future.
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