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H I G H L I G H T S  

• This paper systematically reviews the research progress of RS technology applied to various stages of PV system development. 
• We conclude that RS plays a significant role in PV potential assessment, large-scale data analysis and PV health monitoring. 
• We discuss future challenges and opportunities for RS technology in PV applications for advancing the research in this area.  
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A B S T R A C T   

Developing solar photovoltaic (PV) systems is an effective way to address the problems of limited fossil fuel 
reserves, soaring world energy demand and global climate change. The earth observation information provides a 
promising perspective for estimating the PV energy potential and understanding the status of the PV system 
development, which is critical for making scientifically sound and cost-optimal sustainable planning strategies. 
Remote sensing (RS), a versatile technology that captures surface information at various temporal and spatial 
scales, is now widely applied in different fields of the PV development. However, despite the rapid growth of 
related research, there is still a lack of comprehensive review on the application of RS to different stages (i.e., 
planning, site selection, installation, maintenance, etc.) of the PV system development. This paper systematically 
reviews the research progress of RS technology applied throughout various stages of the PV system development. 
The reviewed literatures are organized as four major parts: i) PV potential estimation, ii) PV array detection, iii) 
PV fault monitoring and diagnosis, and iv) other cross-cutting areas where RS can facilitate PV development. We 
conclude that RS technology can bridge the gap caused by the traditional methods in effective assessment of 
resource potential, large-scale data analysis and PV health monitoring, which can provide strong support in 
assisting the planning, management, and decision-making of PV systems. Finally, we discuss future challenges 
and opportunities for RS technology in PV applications for advancing the research in this area.   

1. Introduction 

1.1. Background 

The development of solar photovoltaics is an important option in the 
transition to sustainable energy sources. Many countries are seeing 
significant growth in demand for solar photovoltaic (PV) energy. 
Remote sensing (RS) is a versatile technology that can obtain earth 

observation information at various temporal and spatial scales. 
Compared with the field investigation that requires high time con-
sumption and labor intensity, RS can provide timely and cost-efficient 
observation solutions for estimating the PV energy potential and un-
derstanding the status of the PV system development. 

In a typical RS application, one or multiple sensors (e.g., photog-
raphy, infrared, microwave devices or a laser scanner) equipped on 
certain platform (e.g., satellite, aircraft, unmanned aerial vehicle (UAV) 
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or ground-based) capture surface images of the specified area, the 
advanced image processing algorithms are then applied for information 
extraction and knowledge inference. The diversity of the sensors and the 
advantages of different platforms allow RS to provide strong support 
throughout the entire phase of the PV system development. On the other 
hand, solar PV systems are evolving towards mobile and distributed 
models. According to different electricity demands, the PV modules are 
widely deployed in various scenarios such as building rooftops, culti-
vated land, mountainous areas, water, and road surfaces. In this context, 
the advantages of RS in terms of wide observation range and rapid data 
acquisition become more prominent. 

In Fig. 1, we summarize the representative RS data acquired from 
typical platforms (i.e., spaceborne, airborne and ground-based), which 
have been applied to various PV scenarios (e.g., residential, commercial, 
agricultural and fishery areas). In general, the visible-light (i.e., RGB) 
images have been the mostly used data across the three platforms; the 
spectral imagery, synthetic aperture radar (SAR) imagery, aerial 
infrared thermography (IRT) imagery, and light detection and ranging 
(LiDAR) data can be obtained from different platforms to support spe-
cific applications. As an important background information, the cost of 
RS data is mainly influenced by the data acquisition platform, the sensor 
type, and the surveying area [1]. The precise price is impacted by 
various factors such as hardware, labor, licensing, business model and 
local policy, but there are still some general differences between 
different RS data [2]: higher spatial/spectral resolution requires higher 
complexity of sensors, which leads to higher cost; for large-scale appli-
cations, satellite data have significant cost advantage over other plat-
forms; UAV captures images at relatively higher cost but can provide up- 
to-date data with hyperfine-resolution; LiDAR data have higher per-unit 
cost than the ones mentioned above, because the sensor is relatively 
more expensive. 

As shown in Fig. 2, the RS data acquired from different platforms and 
sensors are handled by human interpretation, or various algorithms in 
types of machine vision and signal processing, thus providing spatial 
data products or statistical information for different applications. As a 
powerful toolset, RS has been applied to different stages of the PV system 
development such as site planning, installation, operation, and main-
tenance, which gives rise to several representative application scenarios: 
i) PV potential assessment, ii) PV facility detection, iii) PV fault moni-
toring and diagnosis, and iv) other cross-cutting areas where RS tech-
niques can facilitate PV development, such as geological hazard risk 
estimation and techno-economic assessment for novel scenarios. 

1.2. Related works 

Currently, there is still a lack of comprehensive reviews focusing on 
the RS techniques in PV applications. Previous reviews have paid more 
attention to the technical issues within the solar PV system develop-
ment: Livera et al. [3] have reviewed methods applied to fault detection 
and diagnosis in PV systems based on machine learning and statistical 
analysis; Gassar and Cha [4] have reviewed and discussed the studies of 
rooftop solar PV potential estimation; Melius et al. [5] have made a 
detailed summary of the methods that assess the suitability of rooftops 
for PV; Tina et al. [6] have summarized relevant studies on topics 
including PV module modeling, PV design parameter extraction, 
anomaly detection and energy management of PV storage systems. The 
contribution of RS in PV system development has not been sufficiently 
emphasized in these efforts. 

Some other review studies have summarized the important role and 
significant advantages of RS technology in supporting the development 
of renewable energy or PV systems: Avtar et al. [7] have examined the 
studies revealing the application of RS in exploring the ideal locations 

Fig. 1. The representative remote sensing (RS) data acquired from typical platforms, which have been applied to various photovoltaic (PV) scenarios.  
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for renewable energy resources; Tooke and Coops [8] have reviewed the 
application of RS technology to the management and planning of urban 
energy systems; Hoog et al. [9] have investigated the methods of using 
satellite and aerial images for identifying solar PV power systems; Oli-
veira et al. [10] have summarized the methods of performing automatic 
PV system inspection using IRT. However, these works have focused 
more on reviewing the application of RS techniques at specific stage of 
the PV system development; by far, the function that RS acts during the 
entire life cycle of the PV systems has not been comprehensively sum-
marized and discussed. 

1.3. Contributions 

In this paper, we strive to systematically review the role played by RS 
technology in various stages of PV system development, with the aim of 
providing a summary of the related RS techniques, applications, and 
future directions. Our main contributions can be outlined as follows:  

- We present an overview of the several typical RS data applied to 
various stages of PV system development, such as site planning, 
installation, and maintenance.  

- By reviewing state-of-the-art research work, we summarize the 
development trend of RS techniques applied to PV potential esti-
mation, PV array detection, PV fault monitoring and diagnosis, and 
other cross-cutting areas. 

- We conclude the advantages/disadvantages of different RS tech-
niques for major PV application scenarios and highlight the chal-
lenges and future directions. 

The remainder of the paper is organized as follows. Section 2 de-
scribes objectives and methodology of the review. Sections 3, 4, and 5 
discuss studies related to PV potential assessment, PV array detection, 
and troubleshooting of existing PV facilities, respectively. Section 6 and 

7 introduce other promising applications of RS in PV development, 
which are geological hazard risk estimation for typical PV projects and 
techno-economic assessment for novel scenarios, respectively. Section 8 
summarizes the conclusions, the key challenges and the future 
directions. 

2. Objectives and methodology 

The review aims at characterizing the role played by RS technology 
throughout the whole process of PV system development. Based on that 
motivation, we make a systematic survey on the state-of-the-art works 
and present critical analysis of this field, with the following objectives: 

- To illustrate the important functions of RS technology in the devel-
opment of solar resources and PV industry.  

- To summarize the advantages and limitations of the state-of-the-art 
RS techniques and algorithms adopted in solar PV applications, 
thus promoting the integration and development of both fields. 

- To provide informative knowledge about RS and solar PV for re-
searchers from various disciplinary backgrounds and practitioners 
with different application goals. 

Guided by the above objectives, as shown in Table 1, we have 
identified several keywords in our scope of interest and divided them 
into three categories: RS platforms or sensors, PV facilities or targets and 
application scenarios. We have retrieved a preliminary set of the pub-
lished articles from Web of Science and Google Scholar by exhaustively 
combining the keywords from the three categories as the search criteria; 
then, we have screened out 281 articles from the preliminary set by 
checking the abstract of every paper, which are within our scope of 
interest and published up to Oct 2022; finally, we have carefully read 
every screened paper and made further summarization and discussion of 
the reviewed works. 

Fig. 2. The overview of the RS data and methods, which are applied to potential estimation, array detection, fault monitoring and diagnosis, and other aspects of PV 
system development. 
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Generally, the reviewed studies focus on diverse problems related to 
applications of PV or RS, from which we found that RS techniques are 
mostly applied to three aspects of PV deployment: potential assessment, 
installed PV array identification and damage detection. Specifically, the 
RS-based potential assessment is usually performed before PV system 
construction, the array identification from RS imagery can provide ac-
curate and up-to-date installation capacity and geographic distribution 
of PV, while the damage detection and monitoring of PV system is of 
high importance in extending its service life and reducing maintenance 
costs. Therefore, the framework of this review is constructed mainly 
based on these PV application scenarios and RS techniques. 

In addition, we have noticed some other studies which do not belong 
to the above three PV application themes but effectively use RS tech-
niques to estimate the risk of geological hazards for PV projects on some 
specific land types. These works perhaps represent an important trend 
for future development of PV power industry; thus, we categorize them 
separately as the studies of geological hazard risk estimation for typical 
PV projects. Moreover, before making conclusion, we also summarize 
the studies focusing on PV systems deployed in novel scenarios where RS 
techniques could be useful for conducting techno-economic assessment, 
which demonstrate the future application potential of the RS 
technology. 

3. PV potential estimation 

The detailed and accurate estimation of solar PV potential provides 
important guiding information for the techno-economic assessment of 
planned projects and the formulation of regional energy policies. As 
shown in Fig. 3, by searching in Web of Science with different keyword 

combinations, we present the trend of publication numbers in PV po-
tential estimation using different types of RS data. We find that the 
satellite imagery, aerial imagery, and LiDAR data are the three most 
representative RS data in this application. Specifically, the satellite data 
has been applied no later than 1995; the studies related with RS data 
have increased substantially since 2010, in which the usage of LiDAR 
data has the most obvious increase. The following subsections summa-
rize the research on the PV potential estimation using the three types of 
data. 

3.1. Satellite imagery 

For a study area, the total amount of the solar energy that can be 
effectively received is an important indicator of the PV potential. This 
indicator can be assessed by satellite RS in terms of both the surface solar 
irradiance (SSI) as well as the area available for PV deployment. Over 
the past decades, many algorithms for SSI assessment from satellite 
observations have been developed, which can be roughly divided into 
two categories: i) methods based on radiative transfer model (RTM), and 
ii) statistical methods. The RTM-based methods [11–14] aim to quan-
titatively describe the physical process of solar radiation reaching the 
ground, considering the weakening effect of various factors such as 
clouds and various gas components. The statistical methods [15–18] 
estimate the solar radiation by determining regression coefficients be-
tween ground-based radiation and satellite measurements; the statistical 
correlation can be established by empirical assumption, such as Heliosat 
method [19], or optimally solved by machine learning techniques, such 
as artificial neural networks and support vector regression [20,21]. In 
comparison, the RTM-based methods are physically rigorous but require 
more measurements such as atmospheric or surface state information, 
while the statistical methods are essentially approximate solutions but 
usually practical for requiring few types of observations. 

Estimating the terrestrial solar radiation based on satellite observa-
tions can be traced back as far as the 1960s, since the first meteoro-
logical satellite, TIROS-1, was successfully launched [12]. Afterwards, 
the emergence of the subsequent satellite missions has greatly facilitated 
this research area. Fig. 4 shows the launch time of several representative 
meteorological satellites or related projects that aim at better obtaining 
measurements of cloud, aerosol, atmospheric water vapor and so on, 
which contributes to providing RS data with high spatial, temporal, and 
spectral resolution and improving the accuracy of surface irradiance 
calculations. Furthermore, the open source of these satellite data pro-
vide a cost-effective means for generating large-scale (i.e., national or 
global) ground-based solar radiation products [22–26]. 

Apart from the solar radiance, the PV potential is also heavily 
influenced by the land resources available for PV deployment. The 
expansion of the built-up areas will result in an increasing limitation of 
the suitable land resources; thus, PV deployment is currently transiting 
to multi-purpose land use options or distributed solutions. 

Buildings are considered very promising locations for urban PV in-
stallations, because building integrated PV (BIPV) systems not only 
require no additional space but also reduce the transport energy losses 
[27,28]. The planning of the BIPV projects requires detailed information 
about the installation area; for this purpose, the satellite RS technology 
can provide up-to-date image data as well as robust algorithms for data 
processing. Typically, Zhong et al. [29] have extracted building rooftops 
by applying a deep-learning-based semantic segmentation method to 
high-resolution satellite images, revealing that the study area (i.e., 
Nanjing, China) has significant potential for BIPV installation and solar 
power generation. Lee et al. [30] have proposed DeepRoof, a data-driven 
approach that uses satellite images for roof identification and leverages 
open-source data for extraction of roof planar segments; the results 
demonstrate that the proposed approach can produce accurate roof 
geometric features for PV installation area estimation. Other studies 
have attempted to extract more detailed information of rooftops to 
further improve the potential estimation accuracy. For example, 

Table 1 
The main keywords used for retrieving published papers in our scope of interest.  

Category Keywords 

RS platforms 
or sensors 

Remote sensing Satellite Aerial 
Unmanned aerial vehicle 
(UAV) 

LiDAR | SAR Multispectral 

Hyperspectral Infrared 
imaging 

Infrared 
thermography 

PV facilities or 
targets 

Photovoltaic (PV) Photovoltaic 
system 

Photovoltaic 
plant 

Photovoltaic power 
station 

Photovoltaic 
array 

Photovoltaic 
panel 

Solar cell Solar array Solar module 
Application 

scenarios 
Estimation Assessment Segmentation Detection 
Monitoring Maintenance Diagnosis 
Installation Site selection Risk estimation  

Fig. 3. The publication numbers about PV potential estimation based on 
different RS data since 1995. 
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Mainzer et al. [31] have tried to identify the ridge lines, chimneys and 
windows of rooftops from orthographic satellite images for exactly 
calculating the partial roof areas; Sun et al. [32] have proposed a revised 
deep learning network for roof extraction from satellite images and 
classified the rural building rooftops into three categories for separately 
estimating the solar radiation and PV potential. 

In addition, satellite RS can contribute to PV potential estimation in 
more scenarios by providing reliable topographic or interpretation re-
sults of earth surface. Specifically, Liu et al. [33] have adopted several 
RS features (i.e., elevation, slope, built-up index, etc.) obtained from 
satellite data for estimating road PV capacity at city-scale. Zhang et al. 
[34] have utilized satellite images and deep learning methods for land 
use classification and evaluated the PV potential on different land-use 
types. Ates et al. [35] have used Landsat and Sentinel satellite images 
for determining the shoreline of a dam and calculated the floating PV 
potential. 

3.2. Aerial imagery 

Compared with the satellite platform, Aerial RS focuses more in 
capturing surface information from smaller areas (e.g., a village or the 
central area of a city) at lower altitudes, which leads to image data with 
higher resolution. Aerial RS mainly consists of conventional aerial 
photography and UAV photography: the former is generally carried out 
for survey and mapping purposes and requires a manned aircraft; the 
latter is now more widely used due to its advantage of low cost and high 
flexibility. 

In the field of PV potential estimation, the studies using aerial im-
agery have been mostly conducted for BIPV purposes; since more 
detailed information can be acquired in aerial imagery compared to 
satellite data, these studies have considered more about the slope or 
orientation of the rooftops as well as the impact from structures sur-
rounding the building. Krapf et al. [36] have applied a deep learning 
method to aerial images for estimating the economic PV potential of 
each roof, in which two convolutional neural networks (CNNs) are 
trained to perform semantic segmentation of the rooftop and the su-
perstructure, respectively. Mainzer et al. [37] have combined public 
geographic building data and aerial images to determine the roof azi-
muth, which helps to achieve higher accuracy of irradiance simulation 
and power generation than most related studies. Bergamasco et al. [38] 
have proposed an algorithm for extracting the available roof surface 
from the orthorectified aerial images of a city, which takes various 
factors into consideration including shadow, roof exposure and the az-
imuth of the installed panel. 

Recognizing the shadows and superstructures on the rooftops from 
aerial images is essential for accurate estimation of the PV potential. 
However, the image features extracted by monocular-vision algorithms 
can provide limited information for accurate description of the identi-
fied rooftops; in contrast, the photogrammetry technique can utilize the 

stereo aerial images for 3D reconstruction of the study area, which better 
facilitates the interpretation of small structures and the shadow simu-
lation on rooftops. An early study of solar potential estimation based on 
aerial photogrammetry was conducted by Wittman et al. [39], in which 
the rooftops in terms of position, size and azimuth have been measured 
using the stereo image pairs. In a more recent study, Fuentes et al. [40] 
have performed 3D construction based on UAV images to generate a 
digital surface model (DSM), which is used in the follow-up processes of 
shading analysis and PV panel area extraction. 

The aerial images mentioned above mainly refer to images captured 
by visible-light sensors. Additionally, many other types of sensors can be 
mounted on aerial platforms to provide richer information for PV po-
tential estimation, especially when multi-sensor integration system are 
applied. Specifically, Bannehr et al. [41] have employed four different 
RS sensors (i.e., hyperspectral, laser scanner, thermal, visible light) on 
an aircraft for determining comprehensive parameters of the rooftops 
including material characteristics, temperature distribution, slope and 
orientations, which facilitates accurate potential estimation for the use 
of PV panels. Similarly, Nadal et al. have jointly used an airborne laser 
scanning and a long wave infrared sensor for identifying the structures 
and materials of the rooftops, which can effectively support the potential 
estimation of constructing rooftop greenhouses [42]. 

3.3. LiDAR data 

LiDAR, also known as laser scanning, is an active RS technique that 
directly captures 3D point cloud by measuring the timing and intensity 
of the return pulse [43]. As a sensor, the LiDAR instrument can be car-
ried on different RS platforms, leading to various scanning types, such as 
airborne laser scanning (ALS), terrestrial laser scanning (TLS) and mo-
bile laser scanning (MLS). ALS is currently the most accurate technique 
for DSM generation, which generally outperforms the technique of aerial 
photogrammetry; besides, it can also provide measurements beneath the 
vegetation canopy, which facilitates the generation of high-precision 
digital terrain model (DTM) that represents the ground surfaces. The 
advancement of the data processing algorithms (e.g., point cloud clas-
sification and segmentation) for LiDAR data has promoted the potential 
estimation of PV, especially the BIPV, to higher level in accuracy and 
details [44–46]. Fig. 5 shows the typical workflow of using LiDAR for PV 
estimation, in which the point cloud can be classified into multiple 
categories (e.g., vegetation, buildings and ground) for shading calcula-
tion, the structural information of buildings can be further derived for 
determining the available area and azimuth angles of rooftops. 

There have been many studies developed for automatically esti-
mating the solar PV potential of local buildings using LiDAR data. 
Voegtle et al. [44] have extracted the relevant features (i.e., size, 
exposition and slope) of building roof planes from ALS data for selecting 
the suitable areas for PV installations in urban environments. Kassner 
et al. [48] have also used airborne LiDAR data for the extraction of the 

Fig. 4. The launch timeline of several representative meteorological satellites or related projects.  
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roof area with high solar potential, but with a further consideration on 
roof shadows. Jiménez et al. [45] combined LiDAR data with aerial 
images for multi-type (e.g., flat, gable, saddle, etc.) roof characterization 
and PV potential calculation. In another typical study, Jochem et al. [49] 
have used MLS data to extract vertical walls for estimating the solar 
potential of building facades. Since LiDAR and aerial photogrammetry 
are both widely used for building extraction, Kaartinen et al. [50] have 
made an extensive comparison between the two techniques, revealing 
that LiDAR outperforms photogrammetry by enabling the measurement 
of more accurate building elevation and roof planes, as well as higher 
degree of automation. 

The accurate 3D information captured by LiDAR can provide strong 
support for estimating the impact of shadows from vegetation and other 
structures when conducting building modeling and solar potential 
simulation. Specifically, Jochem et al. [51] have used LiDAR point cloud 
for roof plane extraction and shadow effect simulation, they have also 
considered the cloud cover effect for roof solar potential analysis by 

using the meteorological data; a subsequent study has further intro-
duced a measurement of vegetation transparency for more accurate 
shadow effect modeling [52]. Tooke et al. [53] have also demonstrated 
that representing trees as opaque objects leads to substantial underes-
timate of solar irradiance with the use of LiDAR data. Based on a LiDAR- 
derived elevation model, Levinson et al. [54] have proposed a tree 
growth model to more accurately measure the light loss caused by 
shadows for rooftop solar-energy systems. Using LiDAR data for vali-
dation, Nguyen and Pearce [55] have developed a solar irradiation 
model for calculating the shading losses caused by terrain topography in 
solar PV potential estimation. 

4. PV array detection 

The rapid increase of PV installations calls for accurate data collec-
tion and update of the localization and distribution about the installed 
capacity, because it is highly important for better planning of the energy 

Fig. 5. The general workflow of applying LiDAR data to PV potential estimation. The annotated LiDAR point cloud of the DublinCity dataset [47] has been used for 
producing this figure. 

Fig. 6. The difference of three typical RS data on applicable scales and cost for PV array detection.  

Q. Chen et al.                                                                                                                                                                                                                                    



Applied Energy 333 (2023) 120579

7

consumption and capacity expansion. However, obtaining the PV 
installation information based on field surveys and self-reports would be 
time-consuming, labor-intensive, and insufficiently accurate; in 
contrast, RS offers a time-efficient toolset for PV installation data 
collection at different scales, which can localize the installed capacity, 
especially the PV arrays, based on a series of highly automated detection 
algorithms. As shown in Fig. 6, several typical RS data, mainly including 
satellite imagery, aerial RGB images and spectral images, are considered 
as the most representative RS data source for PV array detection, which 
are suitable for application scenarios with different spatial scales, cost 
budgets and accuracy requirements. 

4.1. Satellite imagery 

As one of the most accessible RS data, satellite imagery has become 
one of the main sources for obtaining accurate localization information 
of PV along with the increase in spatial and temporal resolution of the 
spaceborne sensors. The early studies that have used satellite images for 
solar panel detection are mainly based on traditional image processing 
techniques. Specifically, manual designed image features such as color, 
edge, shape and/or texture are first described and extracted, filters, 
thresholding methods or machine learning classifiers are then applied to 
locating or segmenting the PV arrays [56–59]. However, manual- 
designed features could be limited in comprehensively representing 
the variety of imaging condition and PV material properties, which 
significantly hinders the generalization capability of these traditional 
methods. 

In contrast, the recent advanced deep learning techniques, such as 
CNNs, which allow for adaptive representation and extraction of 
extremely high dimensional features, are increasingly becoming popular 
for PV array detection or segmentation. Several studies have successfully 
applied the CNNs to localization and area estimation of solar PVs from 
satellite imagery [60–64]. Li et al. [65] have applied the deep-learning- 
based segmentation methods to a comparison study, revealing that the 
segmentation results of PV panels from 1.2 m resolution images are 
nearly ineffective, acceptable accuracy can be achieved when the reso-
lution increased to 0.3 m (i.e., 65.5 % of test images have PV segmen-
tation IoU higher than 0.5), which is a typical resolution for many 
commercial optical satellites. Yu et al. [66] have made important 
progress by proposing DeepSolar, a deep learning framework that 
applied to 0.3 m satellite imagery for constructing a PV installation 
database, their evaluation has demonstrated that DeepSolar can achieve 
significantly high accuracy on PV panel segmentation and size estima-
tion. Additionally, researchers have also attempted to extract PV in-
stallations using low-resolution (i.e., > 0.3 m) satellite imagery. Golovko 
et al. [67] have used a CNN to achieve high segmentation accuracy (0.86 
in F1-score) of PV panels on 3347 low-quality satellite images. Wang 
et al. [68] have used a deep siamese network to identify solar panels 
from low-resolution historical images by learning the correlation be-
tween the historical images and the high-resolution exemplar images. 

Due to the high importance of labeled data for training a high- 
performance deep learning model, researchers have also contributed 
to construction and open sourcing of benchmark datasets in several 
countries and regions, mainly based on satellite images, which largely 
facilitates the development of related algorithms for PV array detection. 
Table 2 summarizes some typical image datasets indicating PV instal-
lation information, which have made the RS technology more widely 
applied to the analysis of PV systems. 

4.2. Aerial RGB imagery 

The development of distributed PV has progressively led to con-
struction of smaller PV systems with varying sizes in different countries. 
Compared with satellite imagery, aerial or UAV images can capture 
more detailed information and are suitable for collecting localization 
and capacity data of small PV systems. Generally, RGB images have been 

the most used aerial RS data for PV array detection, the algorithms used 
in related studies can also be divided into traditional methods and deep- 
learning-based methods. The representative traditional methods include 
the use of support vector machine and random forest for classifying 
manual-designed features [72–75]. 

The deep-learning-based methods usually follow the development of 
neural network architectures. Malof et al. [76] have explored the per-
formance of the visual geometry group network (VGGNet) for PV panel 
detection. Camilo et al. [77] have applied the SegNet to solar PV panel 
segmentation from aerial orthophotos. González et al. [78] have used 
the U-Net for accurately extracting the boundaries of PV plants from 
UAV images, achieving 0.90 in IoU. Meanwhile, some algorithms have 
also been specially developed to address the unique characteristics of PV 
targets. Jie et al. [79] have introduced the gated fusion module into the 
U-Net-like architecture for better identifying small PV panels and also 
used a multi-task design for refining the edges of the PV segmentation 
results. Parhar et al. [80] have proposed HyperionSolarNet, a two- 
branch framework composed of an image classification model and a 
semantic segmentation model, presenting effective and scalable detec-
tion of solar panels by achieving 0.86 and 0.89 F1-score for classification 
and segmentation, respectively. 

In addition to the location and size of PV panels, the 3D information, 
such as mounting slope and azimuth angle can facilitate more accurate 
estimation and pattern analysis of power generation in PV systems. 
Some studies have been conducted for obtaining 3D information of PV 
systems based on aerial images. Specifically, Edun et al. [81] have 
inferred the azimuth angle from the rotation of the segmented PV panel 
polygons by using edge detection and Hough transform. Rausch et al. 
[82] have combined aerial images and 3D building data to construct 
address-level PV registries with area, slope and orientation angle, which 
has been claimed as a good alternative to self-reported data. Similarly, 
Mayer et al. [83] have proposed the 3D-PV-Locator, a deep-learning- 
based integration solution of image classification, segmentation and 
spatial data processing, for detecting roof-mounted PV systems with 3D 
information (i.e., tilt and azimuth angles), which has been proven able 
to improve the estimation accuracy of PV panel area and capacity for 
residential areas. 

4.3. Aerial spectral imagery 

Due to the variety and the complexity of the PV materials, the im-
aging conditions and the installation environments, the visual charac-
teristics of PV panels can be highly changeable and easily confused with 
other objects (i.e., road, rooftop, or steel structures); thus, accurate PV 
panel detection and segmentation from satellite imagery or aerial RGB 
images remains challenging. Spectral imaging is a technique that 

Table 2 
Several benchmarking datasets of RS imagery labeled with PV installation 
information.  

[Ref]/ 
Year 

Data Sources Location or 
Coverage 

Resolution 
(m) 

PV System & 
Capacity 

[69]/ 
2021 

SPOT6/7 
Sentinel-2 

7.21 × 107 km2 

Global area 
1.5 Non-residential 

PV423 (-75/ 
+77)  
GW 

[57]/ 
2021 

Gaofen-2 
Beijing-2 
Aerial 

107,200 km2 in 
Jiangsu 

0.8/0.3/0.1 PV array level 
3716 samples 

[70]/ 
2020 

Open-source 
imagery 

UK source- 
dependent 

PV array level 
10.66GW 

[66]/ 
2018 

Google Static 
Maps 

The contiguous 
US 

0.3 PV panel level 
1.4702 ±
0.0007 M 
samples 

[71]/ 
2016 

United States 
Geological 
Survey 

California ≤0.3 PV array level 
over 19,000 
samples  
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captures multi-band information across the electromagnetic spectrum, 
which significantly expands the spectral range of the ordinary RGB 
images. Typically, a hyperspectral sensor may have hundreds of narrow 
spectral bands, providing a detailed spectral profile for each pixel in an 
image, which enables the extraction of highly distinguishable features. 

The solar panel materials generally present unique spectral charac-
teristics, which leads to an overall better detection performance in 
spectral images. Czirjak et al. [84] have introduced the normalized solar 
panel index for describing the spectral features of PV solar panel 
reflection, verifying that PV arrays can be measured in hyperspectral 
images by common statistical algorithms. Karoui et al. [85] have con-
ducted a hyperspectral-unmixing based study for PV panel detection, in 
which the ground measurements of the PV panel spectrum by a spec-
trometer has been used. However, although inspiring results have been 
achieved, the segmentation accuracy of the above works could be 
insufficient due to the neglect of the angle-induced spectral variance and 
the spectral diversity of materials. By taking these problems into 
consideration, Ji et al. [86] have conducted a physics-based approach 
that can significantly improve detection accuracy of PV modules in 
spectroscopy data, where the spectral variance caused by detection 
angle has been well solved with the hydrocarbon index, the material 
diversity has been handled by applying a carefully-constructed image 
spectral library. 

Since considerable amount of the solar radiation received by a PV 
module is converted into heat, the PV panels generally would exhibit a 
distinct thermal signature. As a spectral sensor, infrared thermography 
(IRT) captures radiation at 1.4 to 15 μm wavelengths on the surface, the 
thermal signals represented within the captured infrared image can lead 
to accurate segmentation of PV modules from the background. Wang 
et al. [87] have applied Otsu’s method to binary segmentation of 
infrared images for identifying the PV panel borders. Dotenco et al. [88] 
have proposed a statistical and data-driven approach for segmenting PV 
component pixels from infrared images by assuming that the PV module 
temperature is high and normally distributed; the approach has shown 
very high segmentation accuracy (0.96 in F1-score). Shen et al. [89] 
have combined the texture features and gradient edges for extracting PV 
regions from infrared images. In addition to the above methods based on 
low-level features, the deep learning models [90–92] have also been 
applied to PV segmentation from infrared images, some of which [93] 
has reported even higher accuracy (0.97 in F1-score). 

In general, different RS techniques can provide effective support for 
localization and capacity estimation of PV arrays to various degrees, 
while the selection of specific technique is usually dependent on 

accuracy requirements and cost budgets. Fig. 7 shows some examples of 
PV array detection or segmentation from different RS images. 

5. PV fault monitoring and diagnosis 

The failure of PV modules can seriously affect the entire PV system. 
Reliable and efficient performance assessment and fault detection is of 
high importance for reducing safety incidents, increasing the produc-
tivity and extending the lifetime of PV systems. Compared to the tradi-
tional monitoring techniques based on electrical measuring devices, RS 
can provide a timely and non-contact means for damage detection and 
health monitoring of PV panels in complex environments or large-scale 
areas. 

As the main component of a PV system, PV arrays are subject to 
damage during their production, transportation, and utilization. 
Numerous research efforts have discussed different failure modes of PV 
arrays [94–97], which can be classified as encapsulation failures, 
shading and soiling, cell cracking, broken interconnection and hotspot. 
Generally, UAV visible imaging and aerial IRT are the most widely used 
RS techniques for PV fault detection. Fig. 8 compares the publication 
percentages and sample images of the two representative techniques 
applied to different types of failure modes, indicating that each failure 
type has a unique external manifestation, which can be visually pre-
sented in different forms by both the two types of the RS images. 

5.1. UAV RGB imagery 

Earlier monitoring or diagnosis of PV module failures relies heavily 
on human visual inspection, which largely limits the detection accuracy, 
efficiency, and the inspector’s occupational safety. The automatic 
detection methods from aerial RGB images have obvious advantage over 
the visual inspection method because they can accurately identify and 
locate the damage of PV systems without interrupting the PV operations. 
Specifically, Aghaei et al. [105] have investigated the correlation be-
tween the flight height and the detection performance of the PV module 
defects, suggesting that 20 m and 2 cm are ideal flight height and spatial 
resolution, respectively, for effectively detecting most defect types. The 
requirement of extremely high-resolution makes UAV the primary 
platform of acquiring image data for processing. Fig. 9 shows the typical 
fault results detected from UAV RGB imagery. In terms of the algo-
rithms, the traditional image processing methods and the deep-learning- 
based methods represent a major trend of the technical development. 

The traditional image processing algorithms can be effective in 

Fig. 7. The examples of PV array detection or segmentation results from different RS images.  
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several specific tasks of PV defect detection from UAV RGB images. Li 
et al. [108] have used a Gaussian filter and the feature matching algo-
rithm for detecting the snail trails and dust shading of PV modules, 
demonstrating that the two visible defects are be efficiently inspected 
and monitored. Patel et al. [109] have used the algorithms of thresh-
olding, morphology and edge detection for detecting the damaged areas 
of the PV panels. Baig et al. [110] have conducted pixel-level image 
analysis based on mathematical morphology and edge detection algo-
rithms for classifying healthy and unhealthy PV modules. However, the 
application capability of these image processing algorithms is generally 
limited because they are largely dependent on the manual parameter 

tuning and usually bonded to certain data type or imaging 
environments. 

The deep-learning-based methods have been developed for further 
improving the recognition accuracy. Li et al. [106] have developed an 
online PV defect detection system based on a pre-trained CNN and a 
transfer learning design for more adaptive classification. Shihavuddin 
et al. [102] have constructed a image dataset of PV panel surface 
damages and conducted an extensive comparison study on the state-of- 
the-art object detection networks. Sridharan and Sugumaran [111] have 
augmented the dataset with limited PV samples and used a CNN model 
for classifying various fault types from the UAV images. Despite the 

Fig. 8. The publication percentages of the two representative RS techniques (i.e., UAV RGB and aerial IRT) and the sample images (screenshots from [98–104]) for 
different types of PV failures. 

Fig. 9. The typical PV fault detection results from UAV RGB images (See above-mentioned references for further information.)  
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advancement achieved by these studies, PV fault detection from RGB 
images based on deep learning is still facing challenges in detection 
accuracy and adaptability to different defect categories, largely because 
of the limited amount of labeled dataset and insufficient transferability 
of models. 

5.2. Aerial IRT imagery 

PV modules present a uniform temperature distribution during 
normal operation, which is an important clue for identifying the health 
status of PV modules. The abnormally high or low temperature spots 
appeared on unhealthy or damaged PV modules are usually a sign of 
defects and a major concern in PV operation and maintenance. IRT is an 
ideal technique for sensing the temperature information of PV modules. 
In comparison to RGB images, IRT can detect the PV damages that are 
invisible to the naked eye, such as internal short circuits, interconnect 
failures or cracked and broken cells. 

Earlier IRT inspections of PV systems relied on human inspectors 
holding IRT cameras, which was inefficient for large-area monitoring 
and vulnerable to human errors. The aerial IRT, which is typically based 
on lightweight and inexpensive UAVs and automatic algorithms, has 
largely improved the inspection capability and efficiency for PV mod-
ules with different installation heights and angles. 

Table 3 shows the summary of the representative studies on PV fault 
detection and monitoring mainly using aerial IRT data. The algorithms 
for detecting and identifying the PV module defects from infrared im-
ages can be mainly divided into traditional image processing methods 
and deep-learning-based methods. Since the damaged PV panels are 
usually replaced in their entirety during the daily maintenance, statis-
tical features are designed and extracted for determining the overall 
state of single PV module. Meanwhile, the integration of visible-light 
images and infrared images has been a trend for identifying more 
types of PV faults. 

6. Geological hazard risk estimation for typical PV projects 

The rapid development of the PV industry has led to an increasing 
shortage of land for the construction of PV power facilities. As a result, 
developing PV systems on some unused land (e.g., abandoned coal 
mining areas or bare mountains) has been considered as a sustainable 
solution. However, these types of lands are often exposed to the risk of 

geological hazard such as subsidence and landslides. By providing a 
series of techniques for geological hazard risk assessment, RS has played 
a significant role in site selection and safety monitoring of such PV 
projects. 

6.1. Coal mining subsidence areas 

As a pillar energy industry, coal has made a significant contribution 
to the social economic development [129]. However, the coal mining 
activities would disrupt the original stress equilibrium of the overlying 
strata, with consequent mobile deformation such as collapse, fracture 
and bending, resulting in large-scale mining subsidence areas [130]. 
Large-scale ground deformation would pose negative impacts on the 
ecological environment and sustainable development of mining areas; 
thus, many coal mining areas have been discarded. In recent years, the 
coal mining subsidence areas have been gradually used for facility 
construction of PV systems [131,132], which is becoming popular in 
resource-based cities of China (Fig. 10). 

Depending on the degree of ground deformation, the risk level of the 
settlement land can be classified as low, medium, and high subsidence. 
PV power plants are often built on land with evident subsidence, where 
it is difficult to achieve reclamation and develop other industries [133]. 
To ensure the security and stability of the PV power generation facilities, 
it is important to perform dynamic ground deformation monitoring of 
the exploited mining subsidence areas. 

Traditional deformation monitoring methods (i.e., classical geodesy, 
GNSS, etc.) can provide accurate deformation measurement at point 
level. But these methods are difficult to achieve large-scale coverage and 
efficient dynamic monitoring. Differential interferometric SAR (InSAR) 
is an advanced RS technique of acquiring wide range of surface defor-
mation in all weather conditions, which has been frequently applied to 
deformation monitoring in geological disasters and mining areas 
[134,135]. Besides, the technique of time-series InSAR has also been 
widely used in monitoring urban ground subsidence [136] and infra-
structure deformation [137], which is considered capable of overcoming 
certain limitations of differential InSAR, such as spatial and temporal 
decoherence and atmospheric delays. 

6.2. Mountainous areas 

Some PV power plants are built in the mountainous areas for 

Table 3 
The representative studies on PV fault detection and monitoring mainly using aerial IRT data.  

[Ref] Sensor type PV system Damage localization method Type of faults 

Traditional image processing deep learning EFa SSb CCc BId HSe 

[112,113] IR camera PV components level Anomalous temperature detection / ●   ● ● 
[114] Digital camera 

& IR camera 
PV cell level Discolored part identification     ● 

[103,115,116] Aerial IR camera 
& HD photo camera 

PV array level Thermal analysis ● ● ● ● ● 

[117,118] IR camera PV module level Statistical analysis     ● 
[119] IR camera PV cell level PCA, ICA, NMF algorithms LeNet-5, VGG-16, GoogleNet  ● ● ● ● 
[120] Portable thermal imager PV array level Canny edge detection /     ● 
[121] IR camera on moving cart PV module level DBSCAN clustering   ●  ● 
[122,123] Aerial IR camera PV module level Thresholding technique 

Laplacian and binary models     
● 

[124] Digital camera 
& IR camera 

PV module level Thresholding technique    ● ● 

[125,126] Aerial IR camera PV array level Laplace edge detection 
Hough detection 

VGG-16 pre-trained model 
CNN-based classification model    

● ● 

[127] Aerial IR camera PV module level / YOLOv4     ● 
[128] Dual infrared camera PV module level YOLOv5 & ResNet ● ● ●  ●  

a Encapsulation failures. 
b Shading and soiling. 
c Cell cracking. 
d Broken interconnection. 
e Hot spots. 
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limitation of land resources. However, climatic changes and increased 
rainfall may lead to landslides, which poses a serious threat to the fa-
cilities. Therefore, the risk of landslides in the built area should be 
carefully assessed before PV project site selection to avoid additional 
losses caused by the hazards. 

In a typical study, Kim et al. have analyzed the landslide susceptible 
areas to judge the reasonability of the existing government regulations 
for PV plant installation [138]. Generally, the distribution and situation 
of landslides can be constantly changing due to the impact of topog-
raphy and climatic conditions (e.g., precipitation, typhoon paths), 
which makes it difficult to acquire data from field survey for dynamic 
landslide risk assessment of large-scale areas. 

RS has long been an active technology for landslide risk assessment 
due to its capability of extracting various significant parameters, such as 
ground deformation velocity and slope feature [139,140]. Satellite op-
tical and SAR imagery can effectively support detailed landslide detec-
tion, especially after events of extreme rainfall and earthquakes 
[141–143]. Small-scale and individual landslide risk assessment benefits 
a lot from UAV photogrammetry and airborne LiDAR data, which can 
both generate high-quality DTM for improving the interpretation of the 
slope structure and precise ground deformation [144,145]; moreover, 

LiDAR usually shows better performance in vegetated region for its 
vegetation penetration capability. Since ground deformation is one of 
the most important parameters for landslide risk assessment, the tech-
niques of differential and multi-temporal InSAR are also frequently 
adopted [146,147]; thus, the infrastructure vulnerability assessment 
and the dynamic hazard mapping can be achieved by obtaining the 
ground displacement estimates with millimeter precision from large 
stacks of SAR images [148,149]. 

7. Techno-economic assessment for novel scenarios 

As a renewable energy to power a sustainable future [96], the 
penetration and ubiquity of solar PV will be greatly increase in the 
future. To reduce the land requirements of PV installation and meet 
regional high-power demand, many studies have attempted to explore 
the techno-economic potential and feasibility of integrating PV systems 
into unconventional scenarios. In this domain, the variety of RS data or 
techniques are currently getting attention and expected to play impor-
tant role in improving the efficiency and accuracy of the solutions. For 
example, unconventional PV projects often have a complex coupling 
relationship between technical and economic factors; therefore, in 

Fig. 10. PV power facilities that are constructed in typical coal mining subsidence areas of China: (a) PV panels are deployed in an area besides a closed coal mine in 
Yangquan; (b) PV panels are set on a coal mine subsidence lake in Huainan. 

Fig. 11. The variety of the RS-based data products and several unconventional PV-integration scenarios that potentially use RS techniques for conducting techno- 
economic assessment. 
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addition to rapid acquisition of large-scale spatial information, the 
technical and economic assessment often requires reliable and detailed 
multi-modal data (i.e., environmental, ecological, user information, 
etc.) and low-cost planning and design. Advanced RS technologies have 
natural advantages in solving these problems. 

In Fig. 11, beyond the above-mentioned RS applications, we high-
light a few other types of RS-based data products (i.e., land cover & land 
use [150], human activities [151], carbon emissions [152], pollution 
monitoring [153], vegetation growth [154], topographic deformation 
[155], soil moisture [156], water-level monitoring [157] and traffic data 
[158]) that are potentially useful for techno-economic assessment of PV 
projects, which leads to a brief introduction of the research about PV 
integration in several other scenarios: infrastructure-integrated PV, 
complementary PV, land recycling-oriented PV, and city-friendly PV. 

7.1. Infrastructure-integrated PV 

The public infrastructures can provide large amount of open area for 
PV deployment. Jiang et al. [159,160] have integrated the PV system 
into a thermal power plant by deploying the modules on rooftops and 
coal storage sheds, which has facilitated flexible power generation and 
reduction of internal power consumption. Similarly, Qi et al. have 
introduced a motion-based PV system installed on a cooling tower, 
demonstrating that high economic benefits can be achieved [161]. Solar 
PV can also be integrated with other renewable energy generation sys-
tems, such as hydroelectric dams [35,162] and wind farms [163,164]. 
Urban transport infrastructures (high-speed railways, roads, airports, 
etc.) occupy large sunny public area that can be deployed with PV sys-
tems. Chen et al. [165] have estimated the PV potential along the rail 
lines and station rooftops of a high-speed railway, conceptually proving 
the profitability of the integration solution. Jiang et al. [166] have 
assessed the PV potential and associated economic benefits of 239 air-
ports and concluded that terminals and car parks are optimal locations 
for PV installation. It has been reported that the power requirements of 
some airports can be fully satisfied by the PV system deployed in their 
open areas [167]. 

7.2. Complementary PV 

Many PV systems can be deployed with environmental or economic 
complementary effects. The floating PV installed on water bodies of 
oceans, lakes, irrigation ponds, wastewater treatment plants, dams and 
canals, not only increase the power generation efficiency but also can 
improve the aquatic environment for fisheries [168–173]. Agrivoltaics 
systems utilize the land area for both PV power generation and agri-
culture, which can simultaneously provide electrical support and 
favorable environments for agricultural products [174–178]. Choi and 
Song [132] have also mentioned the PV system deployed in operating 
mines of remote areas, where the energy supply can be internally 
resolved by the PV power. 

7.3. Land recycling-oriented PV 

There are large areas of land that have been abandoned for long time 
due to industrial exploitation, pollution, or low habitability. As intro-
duced in Section 6.1, the PV systems constructed on coal mining sub-
sidence areas are a typical example of creative land recycling, which 
provides an option for repurposing the abandoned lands. Based on a 
similar concept, Salasovich and Mosey have estimated the economic and 
technical feasibility of implementing PV systems at a landfill site, sug-
gesting that a key element of this solution is to find a use for the 
generated electricity [179]. The value of the land recycling-oriented PV 
systems has been promoted by government policies due to the promising 
economic benefits [180], probably inspiring more new integration so-
lutions based on other abandoned lands such as industrial wasteland, oil 
fields or desertified land. 

7.4. City-friendly PV 

“Solar architecture is not about fashion, but about survival” [181]. 
The PV systems are appearing in a wider range of urban places, such as 
solar bike lanes [182], road noise barriers [183] and vehicle parking lots 
[184], for providing important electricity support. Considering the 
impact on the cityscape and environment, building city-friendly PV 
systems is becoming another popular research topic. Some BIPV systems 
use the power generation modules as architectural elements at the same 
time, in which the energy production unit can not only bring aesthetic 
comfort to the building, but also serve as insulation against heat and 
noises [185,186]. Since the expansion of PV facilities on the landscape 
may lead to unexpected phenomena and reflections, other PV-related 
studies have focused on the protection of architectural heritage cul-
ture [187], public perception, security, privacy, and ethical consider-
ations [188,189]. 

8. Conclusion and future directions 

This paper reviewed the research progress of the application of RS 
technology to PV system development, mainly focusing on three aspects 
in terms of potential assessment, facility detection, and fault monitoring 
and diagnosis. It can be considered that the RS techniques have 
addressed the shortcomings of the traditional field survey methods in 
efficient large-scale observation information acquisition and analysis, 
providing highly accurate and cost-effective data for planning, man-
agement, and decision-making of PV systems. In Table 4, as a conclu-
sion, we try to summarize and outline the advantages and disadvantages 
of different RS techniques applied to the representative types of PV 
scenarios mentioned above. 

However, despite that the RS techniques and methods strongly 
facilitate the PV system development, significant challenges including 
but not limited to the following aspects remain: 

a) Microscopic-level city modeling. The accurate assessment of PV 
potential and capacity in complex scenes requires the detailed surface 
information to be observed and parametrized more accurately. Typi-
cally, for distributed PV development on rooftops, accurate installation 
area estimation requires precise plane parametrization (e.g., tilt angle, 
orientation) and exclusion of small structures (i.e., chimneys, dormers, 
etc.); rigorous estimation of power generation requires precise recon-
struction of surrounding ground objects and their shading effect simu-
lation. Therefore, microscopic-level 3D city modeling would be a major 
challenge for RS of PV systems, which poses demands on both fine- 
grained data acquisition and intelligent data interpretation. 

b) Adaptivity to complexity of PV materials. Currently, solar PV 
panels are mainly made of single- or poly-crystalline silicon covered 
with ethylene vinyl acetate film and a protective glass cover. The mixed 
material composition makes them easy to be confused with many other 
types of structures such as roads, ponds, skylights and vegetable sheds, 
especially considering the changeable external environments and 
observation conditions. The future renewal of PV materials will also 
place new challenges on the previously applicable RS techniques. 

c) Alleviation of high-resolution dependency. 0.3 m per pixel is 
currently recommended spatial resolution of images for accurate PV 
module segmentation, the requirement increases to 2 cm for conducting 
fault detection and diagnosis. However, most of the freely accessible 
data are relatively low-resolution satellite images, in which the solar PV 
panels are difficult to be identified even for professional human in-
terpreters. Therefore, for cost reduction, it is important and challenging 
to broaden the applicable resolution range by developing and applying 
advanced algorithms. 

d) Learning with limited/no labeled data. Currently, the state-of- 
the-art methods of PV identification and fault detection from RS imagery 
are mostly based on deep learning, which require massive training data 
relying on extensive manual annotation. However, the high-quality PV- 
related RS datasets are generally insufficient by far, especially for the 

Q. Chen et al.                                                                                                                                                                                                                                    



Applied Energy 333 (2023) 120579

13

large-scale datasets of PV fault detection and diagnosis, which poses 
another major challenge for this field: how to conduct effective learning 
when having limited or no labeled data? Is it possible to transfer the 
knowledge learned from datasets of unrelated regions to new test areas? 

The above challenges can be turned into important development 
opportunities and exploring directions of RS applied to PV systems, 
which we summarize as follows: 

a) Cost-effective 3D reconstruction. Although LiDAR remains the 
most stable and convenient technique for urban 3D reconstruction, the 
advanced development of photogrammetry is facilitating more afford-
able 3D reconstruction with high accuracy. For large-scale PV potential 
estimation, the satellite stereo images with sub-meter resolution [190] 
can be considered as a cost-effective data source for 3D information 
extraction and shading calculation. On the other hand, the novel tech-
nique of UAV nap-of-the-object photogrammetry facilitates 3D recon-
struction close to millimeter-level resolution [191], which strongly 
compares with the performance of LiDAR technique. 

b) Mission-customized sensor integration. The PV-related obser-
vation missions focus on different spectral bands of radiometric infor-
mation, the integration of various sensors, such as optical, laser scanning 
and SAR with different spatial/spectral resolutions, can facilitate pro-
cessing and analysis on signals captured from more than one imaging 
technique. Therefore, a careful customization of integrated sensors ac-
cording to specific characteristics (e.g., targets, accuracy requirement 
and geographic range) of the observation tasks will largely improve the 
application effectiveness. 

c) Application of deep generative models. By far, the deep 
learning methods applied to PV-related scenarios are mostly discrimi-
native models. However, the deep generative models also have wide 
promising applications for RS of PV systems, the technical fields where 
these models have made significant contribution can be paid more 
attention. For example, image super resolution or pansharpening 
methods [192,193] can be used to improve the feasibility of low- 
resolution RS images for PV array detection; the methods of monoc-
ular depth estimation [194] an extract 3D information from ordinary 
images for more accurate PV potential estimation. 

d) Crowdsourcing datasets and self-supervised learning. Large- 
scale annotated datasets, such as ImageNet [195], have played an 
important role in promoting the development of deep-learning-based 
vision methods. For specific PV-related tasks, constructing large-scale 
RS datasets through online crowdsourcing could be a feasible 
approach for algorithmic progress in this field. On the other hand, 
applying advanced self-supervised learning methods, such as masked 
autoencoders [196], can be another important direction for reducing the 
dependency on massive labeled training data. 
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Table 4 
The overall conclusion about advantages/disadvantages of different RS tech-
niques for major PV application scenarios.  

PV-related 
Scenario 

RS 
Technique 

Advantages Disadvantages 

Potential 
estimation 

Satellite 
imaging  

• High spatial & 
temporal continuity  

• Meteorological 
observation 
capability  

• Large scale 
applicability  

• Unbounded 
estimation area  

• Dependence on 
observations from 
ground stations for 
SSI assessment  

• Limited capability of 
providing 3D 
information  

• Relatively low 
spatial/temporal 
resolution 

Aerial 
imaging  

• High spatial 
resolution  

• Scalability of sensors  
• 3D surface 

reconstruction 
capability  

• Relatively high cost  
• Relatively 

constrained 
geographic scope 

LiDAR  • Precise acquisition of 
3D information  

• Component-level 
BIPV estimation  

• Reliable shadow and 
occlusion analysis  

• Expensive cost  
• Limited automation 

degree for 3D 
reconstruction of 
roof structures 

Array 
detection 

Satellite 
imaging  

• Large scale 
applicability  

• Abundant freely 
accessible datasets 
and labeled training 
samples  

• Insufficient 
resolution for 
accurate detection  

• Relatively unstable 
data quality due to 
adverse weather and 
cloud cover 

Aerial RGB 
imaging  

• Capability of 
detecting small PV 
targets  

• Acquisition of 
detailed installation 
parameters  

• Limited application 
scale  

• Relatively time- 
consuming in data 
processing 

Aerial 
spectral 
imaging  

• Stronger PV detection 
capability for 
providing richer 
spectral information  

• Higher data volume 
for processing and 
analysis  

• Expensive cost for 
data acquisition 

Fault 
monitoring 
and 
diagnosis 

UAV RGB 
imaging  

• Wider range in 
detection types of 
failures  

• Low cost for data 
acquisition  

• Dependence on 
high-performance 
algorithms  

• Limited to 
inspection of PV 
panels’ surface 

Aerial IRT 
imaging  

• Special detection 
capability for PV 
damages that are 
invisible to the naked 
eye  

• Relatively low 
requirement on 
complexity of 
detection algorithms  

• Limited to close 
range monitoring  

• Relatively high cost 

Geological 
hazard risk 
estimation 

InSAR  • Cost-effective for 
regional and high- 
accurate deformation 
monitoring  

• All weather & all day  

• Limited capability 
for monitoring large 
deformation  

• Sparse measurement 
points in natural 
terrains 

LiDAR  • High-precision 
topography mapping  

• Vegetation 
penetration 
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