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A B S T R A C T

The identification and annotation of buildings has long been a tedious and expensive part of high-precision
vector map production. The deep learning techniques such as fully convolution network (FCN) have largely
promoted the accuracy of automatic building segmentation from remote sensing images. However, compared
with the deep-learning-based building segmentation methods that greatly benefit from data-driven feature
learning, the building boundary vector representation generation techniques mainly rely on handcrafted
features and high human intervention. These techniques continue to employ manual design and ignore the
opportunity of using the rich feature information that can be learned from training data to directly generate
vectorized boundary descriptions. Aiming to address this problem, we introduce PolygonCNN, a learnable end-
to-end vector shape modeling framework for generating building outlines from aerial images. The framework
first performs an FCN-like segmentation to extract initial building contours. Then, by encoding the vertices of
the building polygons along with the pooled image features extracted from segmentation step, a modified
PointNet is proposed to learn shape priors and predict a polygon vertex deformation to generate refined
building vector results. Additionally, we propose 1) a simplify-and-densify sampling strategy to generate
homogeneously sampled polygon with well-kept geometric signals for shape prior learning; and 2) a novel
loss function for estimating shape similarity between building polygons with vastly different vertex numbers.
The experiments on over 10,000 building samples verify that PolygonCNN can generate building vectors with
higher vertex-based F1-score than the state-of-the-art method, and simultaneously well maintains the building
segmentation accuracy achieved by the FCN-like model.
. Introduction

An up-to-date high-precision geographic vector map is not only
f high significance for applications such as urban planning, change
etection, and disaster management, but also plays as an important
ase map in various location-based business and customer services.
erial photography is one of the major data sources for high-precision
ector map production. In the process of converting aerial images to a
ector map, identification and annotation of buildings has long been
tedious and expensive task due to their wide coverage and large

uantity in urban areas. Although publicly available vector maps such
s OpenStreetMap (Haklay and Weber, 2008) and Ordnance Survey
atasets (Hewitt, 2011) can provide mapping information of build-
ngs, the precision of the open-source data is usually limited by prob-
ems like incorrect/missing annotations, misalignment errors and over
eneralization (Vargas-Muñoz et al., 2019; Griffiths and Boehm, 2019).
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Automatic building detection from aerial images has been consid-
ered an important means to improve the efficiency of vector map
production for decades (Paparoditis et al., 1998; Persson et al., 2005;
Yang et al., 2018). In recent years, with support of vast training data
and sufficient computing capacity, deep learning techniques, such as
convolutional neural networks (CNN) (LeCun et al., 1989) and fully
convolutional networks (FCN) (Long et al., 2014), have dramatically
improved the accuracy of building detection from remote sensing im-
ages (Boonpook et al., 2018; Chen et al., 2019; Huang et al., 2019).
However, automatic generation of high-quality building vector maps
from aerial images is not yet a reality for most built-up areas. This is
partly because the deep-learning-based building detection approaches
are still facing challenges, such as the low recognition rate for roofs
occluded by trees or shadows (Chen et al., 2019) and the relatively
924-2716/© 2020 International Society for Photogrammetry and Remote Sensing, I
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poor generalization capability from certain geographic regions to oth-
ers (Maggiori et al., 2017b). Another issue that may not have received
enough attention is that even for the highly accurately detected build-
ings, slight missed/false detection may still persist along the building
boundaries, such that applying polygon simplification techniques to
these boundaries could easily generate inaccurate and irregular vector
shapes.

Compared with the deep-learning-based building segmentation
methods that greatly benefit from data-driven feature learning, the
building boundary optimization techniques, especially those designed
for making commercially valuable vector results, continue to rely on
handcrafted features and high human intervention. Typically, low-
level image features (e.g., straight lines or corner points) and a set
of manually defined rules (e.g., building angles are likely to be 90
degrees) are often adopted to optimize the initially traced building
boundaries (MicroSoft, 2018). These manually designed optimization
strategies can generally achieve good simplification and regularization;
however, the optimization of building boundaries is usually associated
with certain decrease of segmentation accuracy (Zhao et al., 2018; Wei
et al., 2019), since the limited generalization capability of handcrafted
features can easily cause loss of boundary details for certain types of
buildings.

The optimization methods relying on handcrafted features and rules
ignore the opportunity of utilizing the rich feature information that
can be learned from training data. On the contrary, we argue that a
learning-based approach can be developed to model the statistical pat-
terns of the building shape distribution, which we term building shape
riors. In this study, we propose a learnable end-to-end shape modeling
ramework, PolygonCNN, for generating building vectors from aerial
mages. Specifically, PolygonCNN divides the vector generation prob-
em into two successive steps (i.e., building segmentation and shape
ptimization) and tackles them with different network structures. The
uilding segmentation is performed by an FCN-like structure, initial
uilding shapes (i.e., polygons) are extracted from the segmentation
esults; the shape optimization is conducted by a one-dimensional (1D)
NN. The 1D CNN, which is a modified version of PointNet (Qi et al.,
017), takes the vertex sequences of the initial polygons as input and
ptimizes the building shapes by predicting a polygon deformation at
he vertex level to generate regularized and map-ready building vector
esults.

We test PolygonCNN on building instances selected from a large-
cale high-resolution aerial imagery dataset. The experimental results
erify that the proposed framework outperforms the state-of-the-art
ethod in terms of vertex-based F1-score, thus leading to better vector

epresentation of the identified buildings. Simultaneously, the building
egmentation accuracy achieved by the state-of-the-art segmentation
etwork can be well maintained. The main contributions of our work
re as follows:

– We propose PolygonCNN, an integrated learning framework that
ontains an FCN-like structure for building segmentation and a modi-
ied PointNet for shape optimization, the whole framework is trained
nd-to-end.

– We develop a simplify-and-densify strategy for resampling the
nitially traced building contour, which can generate homogeneously
ampled polygon with well-kept geometric signals for shape prior learn-
ng.

– By expanding the receptive field of the convolution kernel and
pplying recursive padding, PointNet is modified to better extract local
nd global geometric features for building shape optimization.

– We propose a novel loss function for estimating shape similarity
etween polygons with vastly different vertex numbers.

The remainder of the paper is structured as follows. Section 2
eviews the related work. Section 3 presents the details of the proposed
ramework. Section 4 introduces the dataset, implementation details
nd the evaluation metrics. Section 5 shows the evaluation results com-
ared with the state-of-the-art methods and discusses the effectiveness
115

f the design options. Section 6 draws the study conclusions.
2. Related work

2.1. Building segmentation

In general, the existing studies of building segmentation can be
categorized into traditional methods and deep-learning-based methods.
Traditional methods usually have a bright line between the steps of
feature extraction and label classification: the features designed for
different operating elements such as pixels (e.g., keypoints or cor-
ner points), edges (e.g., straight lines) and/or regions (e.g., texture,
context, or shadow evidence) are extracted in advance, the building
segments are then generated by applying template matching (Sirma-
cek and Unsalan, 2009), graph cut (Manno-Kovacs and Ok, 2015),
classifiers (e.g., random forest and support vector machine) (Aravena
Pelizari et al., 2018; Turker and Koc-San, 2015) or other techniques
to the featured elements. Despite many significant achievements, the
performance of these methods is largely determined by their hand-
crafted feature design. Since the complexity and variety of buildings
is difficult to be captured and represented by such handcrafted fea-
tures, these traditional methods usually have limited generalization
capability, especially for very-high-resolution aerial images (Wu et al.,
2018b).

The deep-learning-based building segmentation methods, mainly
enlightened by the theory of CNN, allow for adaptive feature learning
from training data. Generally, explicit feature design is not required
for these methods, highly discriminative features can be learned from
massive labeled training data. The earlier studies usually perform pixel-
wise segmentation through a patch-wise classification framework (Guo
et al., 2017; Alshehhi et al., 2017), in which each pixel’s label is
associated with the patch it belongs to. The heavy overlap between
patches results in redundant computation and low efficiency; thus,
the idea of FCN has become more popular for building segmentation
due to its capability of efficiently performing pixel-to-pixel classifica-
tion (Maggiori et al., 2017a; Bittner et al., 2018). Afterwards, several
modified or improved FCN-like models have been proposed and applied
to building segmentation. One of the directions of major improvement
is utilizing symmetric architectures such as SegNet (Badrinarayanan
et al., 2015) and feature pyramid networks (FPN) (Lin et al., 2016)
to enhance the spatial information of the final feature map for class
prediction (Yang et al., 2018). Additionally, techniques such as multi-
scale feature fusion (Zhao et al., 2017; Chen et al., 2019), feature
selection (Huang et al., 2019), decision forests (Mi and Chen, 2020)
and model ensembles (Marmanis et al., 2018) have been proposed to
further improve the segmentation accuracy.

2.2. Building boundary optimization

Segmentation results inevitably have small errors or omissions on
building boundaries; therefore, many building boundary optimization
methods have been proposed for generating accurate, simple and reg-
ular building vector representation from segmented images. A typical
scenario that requires boundary optimization is using image features to
improve the accuracy of building boundaries extracted from point cloud
data (e.g., data generated by airborne laser scanning or dense image
matching) (Chen et al., 2016; Dai et al., 2017; Partovi et al., 2017),
mostly because images of higher resolution can provide more structural
details than the point cloud data. When only image data is available,
the target of optimization usually focuses on generating simplified
and regularized building boundary shapes. In this case, hand-crafted
features or constraint rules such as 90-deg corners or the principal
orientation constraint are often applied (Ling et al., 2012; Zhang et al.,
2018). However, it is difficult for these low-level features to achieve
high generalization performance over diverse buildings that may have
distinct boundary shapes. Although these methods would generally

produce regularized building shapes, the segmentation accuracy of
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Fig. 1. The architecture of the proposed PolygonCNN framework.
Fig. 2. The structure of the building segmentation network.
the identified buildings tends to decrease during the polygonization
process (Zhao et al., 2018; Wei et al., 2019).

Embedding the problem of building boundary extraction/
optimization into a deep learning framework is currently a new trend.
Lu et al. (2018) directly use building edges as ground truths to train
a CNN model that makes boundary predictions; other studies encode
building segmentation and boundary extraction as a multi-task learning
problem by explicitly adopting boundaries as additional supervision,
which evidently makes the two tasks benefit from each other (Marma-
nis et al., 2018; Volpi and Tuia, 2018; Wu et al., 2018a). However,
these approaches stay at modeling building boundary extraction as a
pixel classification problem instead of a shape optimization problem;
thus, the irregularity of the extracted boundaries is not well solved.
Marcos et al. (2018) employ a CNN to learn the parameters of an
active contour model for producing building polygons close to the
ground truths; Cheng et al. (2019) improve this work by proposing a
deep active ray network (DARNet). These studies successfully encode
building boundary optimization as a learnable problem, but still fail
to take into consideration the simplicity and regularity of building
116
vectors. Another deep-learning-based framework that can explicitly
generate object boundaries from images is PolygonRNN (Castrejón
et al., 2017); however, its high memory requirement largely limits the
spatial resolution of the input images.

A similar work to ours is the recently proposed PolyTransform,
which also includes a deforming network for polygon refinement (Liang
et al., 2019). However, PolyTransform is not designed specifically for
buildings in remote sensing scenes, the simplicity and regularity of
the generated vectors is not its concern. Therefore, the two studies
actually have a large difference in their design details: (1) we use the
1D CNN (i.e., the modified PointNet) for shape prior learning, which
is different from the classic CNN adopted in PolyTransform; (2) we
perform a careful vertex resampling for the initial contours before
shape optimization, while PolyTransform directly takes the contours
as input; and (3) we propose a novel loss function for estimating the
similarity between polygons, since the Chamfer Distance loss adopted
by PolyTransform performs poorly in our approach (see details in
Section 5.2.2).
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Fig. 3. The traced building contour and polygons with different sampling strategies. In (d), the red dots represent the vertices of the simplified polygons, the green dots represent
the additional sampled vertices after applying densification. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 4. The structure of the modified PointNet for shape prior Learning. RP stands for recursive padding.
2.3. Shape understanding in deep learning

Building boundary optimization can be formulated as a shape de-
formation problem that takes the sequence of shape vertex coordinates
as input, and regresses the offset for each vertex based on shape
priors. It is worth noting that there have been several instructive deep
learning frameworks designed for learning shape priors of geometric
data. PointNet (Qi et al., 2017) and graph convolutional networks such
as spectral CNN (Yi et al., 2017) show their capabilities of representing
and understanding the geometric features of point clouds, but the
learning tasks of these frameworks are more focused on shape clas-
sification and segmentation, regression of point locations is currently
less researched. Three-dimensional (3D) face reconstruction (Liu et al.,
2018) and single-image 3D reconstruction (Wang et al., 2018) are
typical shape deformation studies that perform point-wise regression;
however, in these approaches, the purpose of the regressor is to predict
depth values for a fixed number of points, which is different from the
requirements of shape deformation for building boundaries.
117
Another key factor to construct a feasible deep learning framework
for shape deformation is the definition of a loss function. The Chamfer
Distance (CD), which sums the projection distance of each point set
to the other point set, has been a widely-used metric in recent studies
for learning tasks of point cloud data (Fan et al., 2017; Groueix et al.,
2018; Sun et al., 2018). CD does not enforce an one-to-one exclusive
matching between two point sets, but still requires the predicted shape
and targeting shape to be close and have similar number of points. The
Earth Mover’s distance (EMD), which finds the optimal bi-projection
between two sets of points and computes the projection distance, is
another metric for point cloud comparison (Fan et al., 2017). The
computation of EMD requires the two point sets to have the same
number of points. However, in our approach, the vertex numbers of
the estimated polygon and the ground-truth polygon can be vastly
different; thus, a more proper loss function is needed for comparing
polygons that have a large difference in number of vertices.
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Fig. 5. Examples of generated building vectors for the test set. The ground truths, the vectors generated by the baseline method and our PolygonCNN are in blue, green and red,
respectively. The probability maps (where blue means low and yellow means high) are intermediate results generated by the segmentation network. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
3. Methods

As illustrated in Fig. 1, the proposed PolygonCNN framework mainly
consists of a segmentation network and a modified PointNet. The
segmentation network is adopted for generating the initial building
contour (i.e., polygon), the modified PointNet adjusts the coordinates of
the polygon vertices to improve the contour accuracy of the building.
Our core idea is to guide the vertices from their initial positions to
more accurate or proper positions while preserving the topology of the
polygon, so that the quality and regularity of the building shape can be
improved. More importantly, after optimizing the positions of vertices,
the loss of small geometric details during the polygon simplification
process can be reduced, since we do not need to apply a strict threshold
to achieve a simplified vector representation. The design details of the
framework are introduced below.
118
3.1. The segmentation network

The pyramid scene parsing network (PSPNet) (Zhao et al., 2017) is
now a widely-used FCN-like models for semantic image segmentation.
It is also proven very effective in building detection from aerial im-
ages (Chen et al., 2019). As shown in Fig. 2, the architecture of PSPNet
including ResNet (He et al., 2016) as backbone is used for building
segmentation in our approach. Furthermore, considering that the sym-
metric design of an FPN can further enhance the spatial information,
which is helpful for improving the initial contour accuracy of building
boundaries, the feature map generated by PSPNet is upsampled twice,
the upsampled maps are merged with their corresponding maps from
the downsampling pathway by lateral connection (i.e., element-wise
addition). The last merged feature map is used to generate the final
feature map, which is followed by an inference structure for predicting
the probability map.
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Fig. 6. Examples of building vectors generated by Polygon-RNN, DARNet and the proposed framework. The ground truths, the vectors generated by Polygon-RNN, DARNet and
our PolygonCNN are in blue, orange, purple and red, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
3.2. Contour tracing and resampling

To remove small structures and pixel classification noise, the mor-
phological opening operation with a rectangular structure element is
applied on the probability map generated by the segmentation net-
work. The filtered probability map is then binarized and the building
boundaries can be extracted by tracing the contours (Suzuki and Be,
1985) of closed areas from the binary map. The traced contour (Fig. 3a)
is essentially a sequence of pixels which contains redundant vertices;
therefore, it is not an appropriate input for a CNN to learn shape priors
of buildings. Removing the intermediate points on straight line seg-
ments can reduce the length of sequence without losing any geometric
details, but this original sampled polygon (Fig. 3b) still retains far more
vertices than are needed for representing the building.
119
Applying polygon simplification approaches such as the Douglas–
Peucker (DP) algorithm (Douglas and Peucker, 1973) can lead to a
relatively simplified sampled polygon (Fig. 3c); however, the distance
between two consecutive vertices could vary considerably due to the
structural changes or slight segmentation errors. In this situation, a
fixed-size convolution operation applied to locations of different struc-
ture might have very different receptive fields (e.g., a 3×3 convolution
kernel could be applied on vertex sequences with significant difference
in contour length), which actually brings biases to the features learned
from different locations.

Considering this problem, we propose a simplify-and-densify strat-
egy to generate homogeneously sampled polygons as input for the
following shape optimization process. First, the initial contour is sim-
plified by the DP algorithm using a relatively loose threshold, the
major geometric signals of the contour can therefore be well preserved.
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Fig. 7. Examples of building vectors generated by the proposed framework using different polygon sampling methods. The ground truths, the vector results generated based on
original sampled polygon, simplified polygon and our homogeneously sampled polygon are in blue, orange, cyan and red, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Then, as Fig. 3d shows, the simplified polygon is densified by adding
sampled points along the polygon edges (i.e., sampling additional
points evenly on the edges longer than a predefined interval). After
this treatment, a sliding convolution kernel can have a similar receptive
field throughout the polygon. The experimental results (Section 5.2.1)
demonstrate that the proposed strategy performs better than others in
terms of vertex-based evaluation metrics.

3.3. The modified pointnet for contour shape optimization

As shown in Fig. 1, after obtaining the homogeneously sampled
polygon for the building contour, a feature pooling process, which
extracts the feature vector corresponding to every polygon vertex, is ap-
plied on the final feature map of the segmentation network. The vertex
coordinates and the pooled features are then concatenated and passed
to a modified PointNet (i.e., the 1D CNN structure) which takes the
combined feature representation as input and optimizes the shape of
the building polygon. We choose to use the PointNet structure because
it has been demonstrated to have strong performance on classification
and segmentation of raw point clouds (Qi et al., 2017); however, to
better fit the requirements of shape prior learning for building contours,
we propose to make two modifications over the original PointNet:

• Expanding receptive fields of the convolution layers. In the
original PointNet, the input point sets are unordered, the coordi-
nates of every point are encoded by a 1 × 1 convolution layer.
However, our approach deals with features that have a specific
order, and we therefore replace the 1 × 1 convolution layers
with 3 × 1 convolution layers to learn local context between
neighboring vertices of the building polygon.

• Applying recursive padding. Zero padding is a generic opera-
tion to avoid shrinkage of dimension when conducting convolu-
tion at the boundaries of the input feature map with filters larger
than 1 × 1. However, in our approach, applying zero padding
to the starting point and end point of the input sequence would
120
ignore the neighborhood relativity between the two points. To
overcome this problem, we choose to consider the input point
sequence as a closed loop, so that the convolution operation
on the point at one end can be performed by ‘‘padding" the
points at the other end. This strategy, which we term recursive
padding, ensures that every point in the sequence can contribute
its neighboring context to the shape prior learning procedure, and
the network can be invariant to the starting point selection of the
polygon.

The process flow of the modified PointNet is illustrated in Fig. 4.
The first two convolution layers generate local features for every vertex
and forms a tensor [𝒇 𝟏,𝒇 𝟐,… ,𝒇𝒏]. The following three convolution
layers increase the feature dimensions and compute the global feature
𝑮 through a max pooling function. The global feature vector is concate-
nated to the local feature vector of each vertex, the combined features
are then handled by the following three convolution layers to extract
the final per-point features, which are used to predict the deformation
vector for every vertex.

3.4. Loss function for estimating similarity between polygons

The refined polygon can be obtained by adding the deformation
vector to the input polygon. To make the shape optimization network
trainable, a loss function must be defined to estimate the similarity
between the refined polygon and the ground-truth polygon. Since the
vertex numbers of the refined polygon and ground-truth polygon could
be vastly different in our approach, applying metrics such as CD or
EMD loss that have been used previously in point cloud comparison
may be infeasible or lead to poor performance. Therefore, a novel
loss function, 𝐿𝑝𝑜𝑙𝑦𝑔𝑜𝑛, is proposed to compare polygons with different
vertex numbers. We define the proposed function as 𝐿𝑝𝑜𝑙𝑦𝑔𝑜𝑛 = 𝐿𝑏𝑝 +
𝜆𝐿𝑟𝑠, where 𝐿𝑏𝑝 and 𝐿𝑟𝑠 represent two metrics, the bi-projection loss and
the relative shape loss, which penalize the deviation of vertices and line
segments, respectively; 𝜆 is the weight parameter of 𝐿 .
𝑟𝑠
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Fig. 8. Examples of the building vector results optimized by different loss functions. The ground truths, the vector results optimized by CD loss, bi-projection loss and the proposed
scheme (bi-projection loss plus relative shape loss) are in blue, yellow, white and red, respectively. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
3.4.1. Bi-projection loss
Considering the difference of the vertex numbers between polygons,

we propose to create a one-to-one point correspondence by sampling
additional points. For a polygon with more vertices 𝑷𝒎 and the other
one with fewer vertices 𝑷 𝒇 , we first determine the correspondence
for every vertex of 𝑷 𝒇 by finding its nearest vertex from 𝑷𝒎. We
name these correspondences as initial pairs 𝑆𝑖𝑝. Then, for the remaining
vertices in 𝑷𝒎, the projection point from the vertex to the nearest
line segment of 𝑷 𝒇 is sampled as its corresponding vertex. These
correspondences are named as additional pairs 𝑆𝑎𝑝. After the one-to-
one point correspondence is determined, the bi-projection loss can be
defined as:

𝐿𝑏𝑝 =
1
𝑛

⎛

⎜

⎜

⎝

∑

(𝒑,�̄�)∈𝑆𝑖𝑝

‖𝒑 − �̄�‖2 +
∑

(𝒒,�̄�)∈𝑆𝑎𝑝

‖𝒒 − �̄�‖2
⎞

⎟

⎟

⎠

(1)

where 𝑛 is the number of total point pairs, (𝒑, �̄�) is a pair of points
from the collection of initial pairs 𝑆𝑖𝑝, (𝒒, �̄�) is a pair of points from the
collection of additional pairs 𝑆 .
121

𝑎𝑝
3.4.2. Relative shape loss
The bi-projection loss can drive the vertices of the refined polygon

to be close to the ground-truth polygon, but for line segments with
different lengths, vertex pairs that have the same deviation may lead
to varying degrees of shape deformation (e.g., for short line segments,
small deviation of the vertex could lead to large shape deformation,
which may not be the case for long line segments). Therefore, we
propose to use relative shape loss as an additional constraint, which
aims at encouraging the matched line segments of the two polygons to
be parallel. For each polygon pair, we break the vertex sequence of 𝑷𝒎
into continuous line segments and determine their matching segments
based on the above one-to-one point correspondence relationship. The
relative shape loss can be defined by calculating the sine measure for
the angle of the directional vectors of the two matched line segments:

𝐿𝑟𝑠 =
1
𝑛

∑

(𝒍,�̄�)∈𝑆𝑙𝑝

‖𝒍 × �̄�‖2
‖𝒍‖2 ⋅ ‖‖�̄�‖‖2

(2)

where 𝑛 is the number of total line-segment pairs, 𝒍 and �̄� are the 3D
directional vectors of the matched line segments with a 0 entry as the
third component, 𝑆 indicates the collection of matched line segments.
𝑙𝑝
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4. Experimental settings

4.1. Dataset

We evaluate our approach on building instances selected from
AIRS (Chen et al., 2019), a large-scale aerial imagery dataset with
7.5 cm resolution and a wide coverage of buildings. Note that since we
focus more on the performance of shape modeling for building vectors,
following the experimental setup of Polygon-RNN (Castrejón et al.,
2017), we assume that a rough bounding box around the building has
been given for every sample and randomly select over 10,000 building
instances from the AIRS dataset. Considering that the buildings have
various sizes, in order to include sufficient background area for each
selected building, we expand its context region by 40% of the size of
its ground-truth bounding box plus 30 pixels of padding; furthermore,
before cropping the aerial image from the expanded box, a random
offset (0–30 pixels) is added to the box to avoid giving the model a prior
knowledge that the building locates in the center of the image. After
this treatment, we separate the samples into two sets, which contain
8131 and 2033 samples for training and testing, respectively.

4.2. Implementation details

We implement and test the proposed PolygonCNN framework in
PyTorch (Steiner et al., 2019) on a 64-bit Ubuntu system equipped
with an NVIDIA GeForce GTX 1080 Ti GPU. We use ResNet-50 as
the backbone of the segmentation network considering the amount
of training data. Following its original implementation, the PSPNet
architecture of our framework outputs a feature map with 1/8th of
the input resolution. After upsampling and feature merging, the final
feature map is half-resolution of the input, which is then upsampled
to input resolution for inference of segmentation results. For reducing
GPU memory consumption, the modified PointNet uses the final feature
map with half-resolution during building contour optimization; thus,
after refinement, the vertex coordinates of the building polygon are
mapped to the input image scale to generate final results of building
vectors.

The framework is trained end-to-end with ADAM (Kingma and Ba,
2015) using a learning rate of 0.0001. The batch size is set as 1, so
that the size difference of samples does not affect the feasibility of
model training. However, for each sample, we still empirically resize
excessively small cropped images such that the longer image side has at
least 103 pixels to ensure sufficient context information, and also resize
excessively large images such that the longer side has at most 553 pixels
for GPU memory limitation. Before feeding the vertex coordinates of
the homogeneously sampled polygon into the modified PointNet, all
the coordinates are normalized to have a mean of 0 and a standard
deviation of 1. We set the threshold 𝜀 of the DP algorithm as 1 pixel
o perform polygon simplification for the traced building contour. The
olygon densification process ensures the distance between consecutive
ertices is shorter than 10 pixels. Besides 3 × 1, we also evaluate
he convolution kernel sizes of 5 × 1 and 7 × 1 for the modified
ointNet and observe similar performance. The weight parameter 𝜆 in

the proposed loss function is set as 1. After shape optimization, the
refined polygon is again processed by the DP algorithm with 𝜀 of 1
pixel to remove redundant vertices.

4.3. Evaluation metrics

The metric of intersection over union (IoU) (Jaccard, 1912) is used
to evaluate the overall performance of building segmentation. Besides
that, similar to the estimation of contour accuracy (Perazzi et al., 2016),
we compute metrics of F1-score, precision, and recall from a vertex-
based perspective to evaluate the vectorization performance of the
generated building vectors. Specifically, the refined polygon and the
ground-truth polygon are interpreted as two sets of vertices; by setting
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Table 1
Results on the test set of the building samples. The IoU is evaluated on the segmentation
results delineated by the finally generated building vectors. The VertexF, VertexP
and VertexR represent the metrics of vertex-based F1-score, precision and recall,
respectively.

Method IoU VertexF VertexP VertexR

Segmentation + DP (Baseline) 0.869 0.194 0.137 0.333
PolygonCNN w/o Image feature 0.878 0.316 0.289 0.349
PolygonCNN w/o Joint training 0.878 0.320 0.292 0.354
PolygonCNN (ours) 0.886 0.417 0.408 0.426

a buffer for every ground-truth vertex, all the vertices can be classified
into true positives, false positives and false negatives, thus the vertex-
based F1-score, precision, and recall, which we term vertex accuracy,
can be computed. Following previous studies (Cheng et al., 2019), for
each metric, the average score of the computed values at buffer sizes
from 1 to 5 pixel is used for evaluation. We use only vertices instead
of the whole contour for evaluation because simplified representation
is of high importance in actual mapping production; furthermore, since
the post-editing process on generated building vectors is mainly based
on vertices, vertex accuracy can better reflect the manual editing work
required for the results to be converted to real products.

5. Results and discussion

5.1. Overall results and comparison

Table 1 reports the evaluation results on the test set of the building
samples. We use a baseline method which shares the same segmen-
tation network of PolygonCNN for generating traced building con-
tours and simply applies the DP algorithm for polygon simplification.
Additionally, we adopt two ablated versions of the proposed frame-
work for comparison. The first one drops the pooled image feature
from the input of the modified PointNet but only feeds it with the
coordinates; thus, the segmentation network and the shape optimiza-
tion network work as two separate modules. The second one has the
same feed-forward manner as PolygonCNN but trains the two modules
separately.

The results show that the baseline method performs poorly in vertex
accuracy, especially of the precision; besides that, applying the DP
algorithm does decrease the accuracy of building segmentation (from
0.880 to 0.869 in IoU). Even without using the pooled image features,
the proposed framework can largely improve the vertex accuracy over
the baseline (0.316 vs. 0.194 in F1-score). When the image features are
used, the framework without joint training has almost no difference
in its performance. In contrast, the end-to-end trained PolygonCNN
gains a further improvement on the vertex accuracy (0.417 vs. 0.316 in
F1-score); meanwhile, the segmentation accuracy of the framework is
also slightly increased, which even outperforms the original accuracy
achieved by the segmentation network (0.886 vs. 0.880 in IoU). This
indicates that the segmentation task and the shape optimization task of
our framework can benefit from each other during the joint training.

Fig. 5 shows examples of building vectors generated by the base-
line method and our PolygonCNN framework. The probability maps
demonstrate that the main structure of these samples are well detected
by the segmentation network; however, slight disturbance still exists,
especially at the roof edges and corners. As a consequence, the baseline
results show that applying DP with a loose threshold (1 pixel) leaves
many redundant vertices, and also some false or missed detection
remains. In comparison, our PolygonCNN can use the image feature
along with the learned shape priors to refine the vertex positions, which
leads to a more accurate vector shape with largely reduced vertices.
Note that the DP algorithm applied on the refined polygon uses the
same threshold as the baseline. When the building segmentation results

have obvious errors or fail to recover certain local details (enlarged
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Table 2
Comparison of the evaluation results between DARNet and PolygonCNN. The IoU is
evaluated on the segmentation results delineated by the finally generated building
vectors. The VertexF, VertexP and VertexR represent the metrics of vertex-based
F1-score, precision and recall calculated at different buffer size, respectively.

Method IoU Vertex accuracy

Buffer size VertexF VertexP VertexR

Polygon-RNN 0.677

1 pixel 0.143 0.184 0.117
2 pixel 0.320 0.412 0.262
3 pixel 0.417 0.536 0.341
4 pixel 0.470 0.605 0.385
5 pixel 0.505 0.650 0.413
Average 0.371 0.478 0.304

DARNet 0.771

1 pixel 0.006 0.005 0.007
2 pixel 0.021 0.018 0.026
3 pixel 0.049 0.041 0.061
4 pixel 0.084 0.070 0.103
5 pixel 0.134 0.112 0.165
Average 0.059 0.049 0.073

PolygonCNN 0.886

1 pixel 0.137 0.134 0.140
2 pixel 0.350 0.343 0.357
3 pixel 0.477 0.467 0.487
4 pixel 0.543 0.532 0.554
5 pixel 0.579 0.567 0.591
Average 0.417 0.408 0.426

view in Fig. 5b, d), our framework basically cannot correct the existing
errors. Instead, the framework guides the initial building shape to be
more regular from a geometric perspective, which we believe is a good
compromise when obtaining perfect results is difficult. More results
generated by our framework are shown in Appendix.

We then compare our framework with Polygon-RNN2 and DAR-
Net (Cheng et al., 2019), which solve the similar problem as ours.
For a fair comparison, we train Polygon-RNN and DARNet with the
same training set and conduct prediction on the same test set used by
PolygonCNN; the generated building boundaries are also processed by
the DP algorithm with 𝜀 of 1 pixel.

Table 2 reports the evaluation results of the three frameworks.
Besides the average score of vertex-based F1-score, precision and recall,
the values of these metrics calculated at different buffer sizes are also
presented in the table. The results show that our PolygonCNN achieves
the highest segmentation accuracy (0.886 in IoU). Polygon-RNN has
the worst performance in terms of building segmentation (0.677 in IoU)
because it fails to detect complete roof structure for many complicated
buildings. The vertex-based precision of Polygon-RNN is the highest
among the three, which indicates that this framework performs the
best in accurately detecting the vertex points (corners) of the building
vectors. Our framework outperforms Polygon-RNN in terms of the
overall vertex accuracy (0.417 vs. 0.371 in average F1-score) due to the
higher recall rate of the polygon vertices (0.426 vs. 0.304 in average
recall). DARNet performs poorly in the three vertex-based metrics at
every buffer size, which reflects that this framework can hardly produce
polygon vertices that are in 5-pixel buffer area of the ground-truth
vertices and generates large number of redundant vertices outside the
range. Compared to the original paper, the evaluation values of DARNet
decrease sharply, this is largely because they use the whole contour of
polygon for metric calculation, while we only use vertices.

The examples of Fig. 6 show that Polygon-RNN can accurately gen-
erate the polygon vertices for the buildings with simple structure and
plain texture (Fig. 6a, b), but fails to recover complete roof structure
when processing more complicated samples (Fig. 6c–e), which could be
due to the insufficient capability of its segmentation module. DARNet
is basically capable of extracting the main structures of the buildings,

2 An unofficial implementation of Polygon-RNN (https://github.com/
lexMa011/pytorch-polygon-rnn) is adopted.
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Table 3
The evaluation results of the proposed framework using different polygon sampling
strategies. The IoU is evaluated on the segmentation results delineated by the finally
generated building vectors. The VertexF, VertexP and VertexR represent the metrics
of vertex-based F1-score, precision and recall, respectively.

Method IoU VertexF VertexP VertexR

Original sampling 0.864 0.244 0.197 0.321
Simplified sampling 0.873 0.369 0.359 0.379
Homogeneous sampling (ours) 0.886 0.417 0.408 0.426

Table 4
The evaluation results of the proposed framework using different loss functions. The IoU
is evaluated on the segmentation results delineated by the finally generated building
vectors. The VertexF, VertexP and VertexR represent the metrics of vertex-based
F1-score, precision and recall, respectively.

Method IoU VertexF VertexP VertexR

CD loss 0.070 0.038 0.023 0.102
Bi-projection loss 0.849 0.365 0.337 0.397
Bi-projection + Relative 0.886 0.417 0.408 0.426Shape loss (ours)

but usually fails to accurately capture the small boundary details and
sharp corners; thus, redundant vertices can easily be observed from its
results (enlarged view in Fig. 6b, d), which is largely responsible for the
poor performance in the vertex accuracy estimation. In comparison, our
PolygonCNN can obtain better segmentation results for the buildings
and also achieve simplified vector representation for different samples.

5.2. Analysis of design options

We also evaluate the feasibility of the proposed framework by as-
sessing the performance of alternative design options. We first analyze
the impact of different polygon sampling strategies described in Fig. 3,
and then compare the results optimized by different loss functions.

5.2.1. Vertex sampling of polygon
Table 3 reports the evaluation results of the proposed framework us-

ing three different polygon sampling strategies. For different sampling
methods, the refined polygons are all processed by the DP algorithm
using the same threshold to generate final results. The following com-
parison shows that although the three methods perform similarly in
terms of segmentation accuracy (slight difference in IoU), their per-
formance in vertex accuracy is largely affected by different sampling
strategies. The original sampling leads to a much lower accuracy than
the other two methods, especially in terms of precision. This is partially
because the redundant vertices cannot be removed during the polygon
simplification process after shape optimization. Our homogeneous sam-
pling method performs better than the simplified sampling by about
5% in all vertex-based metrics, which quantitatively indicates that the
proposed strategy helps the optimization module guide more vertices
close to their correct positions.

The examples in Fig. 7 shows that the original sampling could easily
result in over-smooth boundaries and inaccurate representation for cor-
ners. The simplified sampling can lead to much more simplified vector
results; however, the proposed sampling strategy can generally help
the framework achieve slightly more accurate vector representation,
especially at the corners with less obvious image features (the enlarged
view in Fig. 7a, b).

5.2.2. Loss function for comparing polygons
Since CD loss is a widely used function for comparing point cloud,

our initial attempt is to test it in the proposed framework. However,
as reported in Table 4, the application of CD loss can hardly generate
practical results. The bi-projection loss makes it possible to obtain rea-
sonable results and outperforms the baseline in terms of vertex accuracy
(0.365 vs. 0.194 in F1-score), largely because this loss function takes

https://github.com/AlexMa011/pytorch-polygon-rnn
https://github.com/AlexMa011/pytorch-polygon-rnn
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Fig. A.1. More examples of the building vector results generated by our PolygonCNN. The generated vectors are in red; the ground truths are shaded in blue. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
account of the vast difference of the vertex numbers between polygons
in our approach. Furthermore, by applying relative shape loss as an
additional item, the proposed framework gains more improvement both
in segmentation and vertex accuracy. The vertex accuracy improvement
is mainly driven by the precision (0.408 vs. 0.337), which indicates that
the portion of erroneous vertices among the vector results is effectively
reduced.

The examples in Fig. 8 shows that applying CD loss is completely
unable to maintain the original shape of the vectors. The difference
between applying bi-projection loss only and the proposed scheme
mainly lies in the regularity of corners. As shown in the enlarged view
of the figures, the proposed loss function is more likely to constrain
the corners to have right angles, which to some extent verifies the
effectiveness of the angular constraint designed in the relative shape
loss.
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6. Conclusion

In this work, we propose PolygonCNN, an end-to-end learning
framework for generating vectorized building outlines from aerial im-
ages. The framework contains a segmentation network for initial build-
ing contour extraction and a modified PointNet for shape optimization.
After building segmentation and contour initialization, a simplify-and-
densify sampling strategy is proposed and applied on the initial con-
tour, which not only generates a homogeneously sampled polygon
as input for the modified PointNet but also maintains an accurate
representation of the original geometric signals. The modified PointNet
refines the vertex coordinates of the polygon by predicting the offset for
each vertex. Since the refined polygon and the ground-truth polygon
may have a large difference in vertex cardinality, a novel loss function
combining bi-projection loss and relative shape loss is proposed to train
the framework effectively. The experimental results on a test set with
over 2000 building samples demonstrate that our PolygonCNN can
generate simplified and regular building vector results and improve
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the vertex-based F1-score over the state-of-the-art method. Meanwhile,
the feasibility of sampling strategy and loss function adopted by the
framework is verified by assessing the performance of alternative de-
sign options. A subsequent study will try to use instance segmentation
techniques rather than classic semantic segmentation methods to fur-
ther improve the practicality of the proposed framework. Moreover,
experiments on a larger scale are also considered in future works.
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Appendix. More visual results

See Fig. A.1.
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